Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577523

RESUMEN

Grp94 is the endoplasmic reticulum paralog of the hsp90 family of chaperones, which have been targeted for therapeutic intervention via their highly conserved ATP binding sites. The design of paralog-selective inhibitors relies on understanding the structural elements that mediate each paralog's response to inhibitor binding. Here, we determined the structures of Grp94 and Hsp90 in complex with the Grp94-selective inhibitor PU-H36, and of Grp94 with the non-selective inhibitor PU-H71. In Grp94, the 8-aryl moiety of PU-H36 is inserted into Site 2, a conditionally available side pocket, but in Hsp90 it occupies Site 1, a non-selective side pocket that is accessible in all hsp90 paralogs. The structure of Grp94 in complex with the non-selective PU-H71 shows only Site 1 binding. Large conformational shifts involving helices 1, 4 and 5 of the N-terminal domain of Grp94 are associated with the engagement of the Site 2 pocket for ligand binding. To understand the origins of Site 2 pocket engagement, we tested the binding of Grp94-selective ligands to chimeric Grp94/Hsp90 constructs. These studies show that helix 1 of the Grp94 N-terminal domain is the discriminating element that allows for remodeling of the ATP binding pocket and exposure of the Site 2 selective pocket.

2.
Cell Rep ; 31(13): 107840, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610141

RESUMEN

Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Línea Celular Tumoral , Citosol/metabolismo , Glicosilación , Proteínas HSP70 de Choque Térmico/química , Humanos , Proteínas de la Membrana/química , Ratones Endogámicos NOD , Peso Molecular , Neoplasias/metabolismo , Oncogenes , Polisacáridos/metabolismo , Conformación Proteica
3.
J Biol Chem ; 294(44): 16010-16019, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501246

RESUMEN

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90ß, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.


Asunto(s)
Adenosina-5'-(N-etilcarboxamida)/farmacología , Glicoproteínas de Membrana/química , Simulación del Acoplamiento Molecular , Adenosina-5'-(N-etilcarboxamida)/análogos & derivados , Regulación Alostérica , Sitios de Unión , Humanos , Glicoproteínas de Membrana/metabolismo , Unión Proteica
4.
Proteins ; 87(10): 869-877, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31141217

RESUMEN

Hsp90α and Hsp90ß are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90ß bound to PU-11-trans, as well as the structure of the apo Hsp90ß NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90ß, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90ß. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/ß selectivity.


Asunto(s)
Aminoácidos/metabolismo , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Purinas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Desarrollo de Medicamentos , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Mutación , Conformación Proteica , Purinas/química , Homología de Secuencia
5.
J Med Chem ; 61(7): 2793-2805, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29528635

RESUMEN

Grp94 and Hsp90, the ER and cytoplasmic hsp90 paralogs, share a conserved ATP-binding pocket that has been targeted for therapeutics. Paralog-selective inhibitors may lead to drugs with fewer side effects. Here, we analyzed 1 (BnIm), a benzyl imidazole resorcinylic inhibitor, for its mode of binding. The structures of 1 bound to Hsp90 and Grp94 reveal large conformational changes in Grp94 but not Hsp90 that expose site 2, a binding pocket adjacent to the central ATP cavity that is ordinarily blocked. The Grp94:1 structure reveals a flipped pose of the resorcinylic scaffold that inserts into the exposed site 2. We exploited this flipped binding pose to develop a Grp94-selective derivative of 1. Our structural analysis shows that the ability of the ligand to insert its benzyl imidazole substituent into site 1, a different side pocket off the ATP binding cavity, is the key to exposing site 2 in Grp94.


Asunto(s)
Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/química , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Adenosina Trifosfato/química , Animales , Cristalografía por Rayos X , Perros , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
6.
PLoS One ; 11(11): e0166271, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27824935

RESUMEN

Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Perros , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...