Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38934361

RESUMEN

Formamidinium lead triiodide quantum dot (FAPbI3 QD) exhibits substantial potential in solar cells due to its suitable band gap, extended carrier lifetime, and superior phase stability. However, despite great attempts toward reconfiguring the surface chemical environment of FAPbI3 QDs, achieving the optimal efficiency of charge carrier extraction and transfer in cells remains a challenge. To circumvent this problem, we selectively introduced Au/FAPbI3 Schottky heterojunctions by reducing Au+ to Au0 and subsequently anchoring them on the surface of FAPbI3 QDs, which acts as a light-harvesting layer and establishes high-speed electron transfer channels (Au dot ↔ Au dot). As a result, the champion photoelectric conversion efficiency of solar cells reached 13.68%, a significant improvement over 11.19% of that of FAPbI3-based solar cells. The enhancement is attributed to efficient and directed electron transfer as well as a more aligned energy level arrangement. This work constructed Au/FAPbI3 QD Schottky heterojunctions, providing a viable strategy to enhance QD electron coupling for high-performance optoelectronic applications.

2.
ACS Nano ; 18(18): 11675-11687, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651298

RESUMEN

Ultrathin MXene-based films exhibit superior conductivity and high capacitance, showing promise as electrodes for flexible supercapacitors. This work describes a simple method to enhance the performance of MXene-based supercapacitors by expanding and stabilizing the interlayer space between MXene flakes while controlling the functional groups to improve the conductivity. Ti3C2Tx MXene flakes are treated with bacterial cellulose (BC) and NaOH to form a composite MXene/BC (A-M/BC) electrode with a microporous interlayer and high surface area (62.47 m2 g-1). Annealing the films at low temperature partially carbonizes BC, increasing the overall electrical conductivity of the films. Improvement in conductivity is also attributed to the reduction of -F, -Cl, and -OH functional groups, leaving -Na and -O functional groups on the surface. As a result, the A-M/BC electrode demonstrates a capacitance of 594 F g-1 at a current density of 1 A g-1 in 3 M H2SO4, which represents a ∼2× increase over similarly processed films without BC (309 F g-1) or pure MXene (298 F g-1). The corresponding device has an energy density of 9.63 Wh kg-1 at a power density of 250 W kg-1. BC is inexpensive and enhances the overall performance of MXene-based film electrodes in electronic devices. This method underscores the importance of functional group regulation in enhancing MXene-based materials for energy storage.

3.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611757

RESUMEN

With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic-inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability of these perovskite solar cells, due to the decomposition of its unstable organic components, has restricted the development of all-inorganic perovskite solar cells. In recent years, Br-mixed halogen all-inorganic perovskites (CsPbI3-xBrx) have aroused great interests due to their ability to balance the band gap and phase stability of pure CsPbX3. However, the photoinduced phase segregation in lead mixed halide perovskites is still a big burden on their practical industrial production and commercialization. Here, we demonstrate inhibited photoinduced phase segregation all-inorganic CsPbI1.2Br1.8 films and their corresponding perovskite solar cells by incorporating a 1-butyl-1-methylpiperidinium tetrafluoroborate ([BMP]+[BF4]-) compound into the CsPbI1.2Br1.8 films. Then, its effect on the perovskite films and the corresponding hole transport layer-free CsPbI1.2Br1.8 solar cells with carbon electrodes under light is investigated. With a prolonged time added to the reduced phase segregation terminal, this additive shows an inhibitory effect on the photoinduced phase segregation phenomenon for perovskite films and devices with enhanced cell efficiency. Our study reveals an efficient and simple route that suppresses photoinduced phase segregation in cesium lead mixed halide perovskite solar cells with enhanced efficiency.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38669566

RESUMEN

The negative effect of photoinduced halide segregation (PIHS) on the properties of hybrid halide perovskites poses a major obstacle for its future commercial application. Therefore, the in-depth understanding of halide-ion segregation and its causes is an urgent and intractable problem. When PIHS reaches a certain threshold, it will aggravate the deterioration of the film surface morphology and form nanoscale cracks. Herein, the formation mechanism and types of cracks are revealed by exploring the stress distribution in the film. Using the femtosecond time-resolved transient absorption spectroscopy, the ultrafast formation of the iodine rich phase is observed, which appears earlier than the bromine rich phase. In addition, the introduction of organic ligand didodecyldimethylammonium bromide can significantly inhibit PIHS and improve the surface morphology of the film, which can promote the device efficiency from 9.63 to 11.20%. This work provides a novel perspective for the exploration of the PIHS.

5.
Small ; : e2312241, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506575

RESUMEN

Solar interfacial evaporation technology has the advantages of environmentally conscious and sustainable benefits. Recent research on light absorption, water transportation, and thermal management has improved the evaporation performance of solar interfacial evaporators. However, many studies on photothermal materials and structures only aim to improve performance, neglecting explanations for heat and mass transfer coupling or providing evidence for performance enhancement. Numerical simulation can simulate the diffusion paths and heat and water transfer processes to understand the thermal and mass transfer mechanism, thereby better achieving the design of efficient solar interfacial evaporators. Therefore, this review summarizes the latest exciting findings and tremendous advances in numerical simulation for solar interfacial evaporation. First, it presents a macroscopic summary of the application of simulation in temperature distribution, salt concentration distribution, and vapor flux distribution during evaporation. Second, the utilization of simulation in the microscopic is summed up, specifically focusing on the movement of water molecules and the mechanisms of light responses during evaporation. Finally, all simulation methods have the goal of validating the physical processes in solar interfacial evaporation. It is hoped that the use of numerical simulation can provide theoretical guidance and technical support for the application of solar-driven interfacial evaporation technology.

6.
Front Chem ; 12: 1361275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348406

RESUMEN

Perovskite solar cells show great potential application prospects in the field of solar cells due to their promising properties. However, most perovskite solar cells that exhibit excellent photovoltaic performance typically require a carrier transport layer that necessitates a high-temperature annealing process. This greatly restricts the scalability and compatibility of perovskite solar cells in flexible electronics. In this paper, SnO2 nanoparticles with high crystallinity, good dispersibility and uniform particle size distribution are first prepared using a solvothermal method and dispersed in n-butanol solution. SnO2 electron transport layers are then prepared by a low-temperature spin coating method, and the photovoltaic characteristics of perovskite solar cells prepared with different SnO2 nanoparticles/n-butanol concentrations are studied. Results indicate that the rigid perovskite solar cell achieves the highest power conversion efficiency of 15.61% when the concentration of SnO2 nanoparticles/n-butanol is 15 mg mL-1. Finally, our strategy is successfully applying on flexible perovskite solar cells with a highest PCE of 14.75%. Our paper offers a new possibility for large-scale preparation and application of perovskite solar cells in flexible electronics in the future.

7.
Nanotechnology ; 34(25)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36962973

RESUMEN

Combining the new two-dimensional conductive MXene with transition metal oxide to build composite structure is a promising path to improve the conductivity of metal oxide. However, a critical challenge still remains in how to achieve a good combination of MXene and metal oxide. Herein, we develop a facile hydrothermal route to synthesize the MnO2/Ti3C2Txcomposite electrode for supercapacitors by synergistically coupling MnO2nanowires with Ti3C2TxMXene nanoflakes. Compared with the pure MnO2electrode, the morphology of the MnO2/Ti3C2Txcomposite electrode changes from nanowires to nanoflowers. Moreover, the overall conductivity and electrochemical performance of the composite electrode are greatly improved due to an addition of Ti3C2TxMXene. The specific capacitance of the MnO2/Ti3C2Txcomposite electrode achieves 210.8 F·g-1at a scan rate of 2 mV·s-1, while that of the pure MnO2electrode is only 55.2 F·g-1. Furthermore, the specific capacitance of the MnO2/Ti3C2Txcomposite electrode still can remain at 97.2% even after 10 000 charge-discharge cycles, revealing an excellent cycle stability. The synthesis strategy of this work can pave the way for the research and practical application of the electrode materials for supercapacitors.

8.
Materials (Basel) ; 16(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36837158

RESUMEN

We adopted a simple one-step electrochemical deposition to acquire an efficient nickel cobalt phosphorus (NiCoP) catalyst, which avoided the high temperature phosphatization engineering involved in the traditional synthesis method. The effects of electrolyte composition and deposition time on electrocatalytic performance were studied systematically. The as-prepared NiCoP achieved the lowest overpotential (η10 = 111 mV in the acidic condition and η10 = 120 mV in the alkaline condition) for the hydrogen evolution reaction (HER). Under 1 M KOH conditions, optimal oxygen evolution reaction (OER) activity (η10 = 276 mV) was also observed. Furthermore, the bifunctional NiCoP catalyst enabled a high-efficiency overall water-splitting by applying an external potential of 1.69 V. The surface valence and structural evolution of NiCoP samples with slowly decaying stability under alkaline conditions are revealed by XPS. The NiCoP is reconstructed into the Ni(Co)(OH)2 (for HER) and Ni(Co)OOH (for OER) on the surface with P element loss, acting as real "active sites".

9.
Recent Pat Nanotechnol ; 17(3): 176-182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35125089

RESUMEN

Recently, passive solar-driven interfacial evaporation has become one of the fastest-growing technologies for solar energy utilization and desalination. Herein this patent, we provide an overview of other emerging and potential applications of evaporation nanosystems beyond desalination, i.e., electricity generation, organics rejection, and sterilization. These extended functions can be a benefit for energy and environmental issues.

10.
Small ; 18(48): e2204917, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36284511

RESUMEN

2D MXene nanoflakes usually undergo serious restacking, that easily aggravates during the traditional vacuum-assisted filtration process; and thus, hinders the electrochemical performance of the corresponding film electrodes. Herein, 3D porous compact 1D/2D Fe2 O3 /MXene aerogel film electrode with an enhanced electrochemical performance is fabricated by freeze-drying assisted mechanical pressing. An introduction of 1D α-Fe2 O3 nanorods can not only alleviate the restacking of 2D MXene but also provide additional pseudocapacitance for the composite film system. Thus, the resulting Fe2 O3 /MXene aerogel film electrode shows an enhanced specific capacitance of 182 F g-1 (691 mF cm-2 ) at a current density of 1 A g-1 in 3 m H2 SO4 electrolyte as well as with 81.74% capacitance retention after 10 000 charge-discharge cycles. Besides, the addition of 1D α-Fe2 O3 nanorods has a significant contribution in the volumetric capacitance of the composite aerogel film (150 F cm-3 ), which is 2.68 times that of the pure MXene aerogel film (56 F cm-3 ). Moreover, the fabricated all-solid-state symmetric supercapacitor (SSSC) delivers a superior areal energy density of 3.61 µWh cm-2 at a power density of 119.04 µW cm-2 . This rapid-forming 3D porous, binder-free, and freestanding aerogel film provides a progressive strategy for the fabrication of MXene-based electrode for supercapacitors.

11.
Membranes (Basel) ; 12(9)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36135918

RESUMEN

Solar-driven interfacial evaporation is an ideal technology for seawater desalination, and the corresponding system is mainly composed of a solar evaporator and a condensing collector. The traditional scheme focuses on the evaporation efficiency of the evaporator. Still, it ignores the influence of condensing collection scheme on the overall efficiency, which is one of the obstacles to the practical use of solar seawater desalination. Here, we reported a new solar-driven interfacial evaporation seawater desalination system by studying the influence of the condensation architecture, i.e., vapor flow by a fan and an air pump, sidewall material, transparent cover shape and material, evaporation level, and transparent cover heating, on the apparent collection efficiency of the system. The apparent collection efficiency was up to over 90% after optimization. This study is expected to promote the practical application of solar evaporation desalination technology.

12.
Phys Chem Chem Phys ; 24(31): 18896-18904, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35913206

RESUMEN

Due to their low cost, tunable band gap and excellent thermostability, all-inorganic halide perovskites CsPbX3 (X = Br, I) have become a kind of promising photovoltaic material. However, compared to the organic-inorganic hybrid perovskite solar cells, the performance of CsPbX3 solar cells still needs to be improved. In this work, for the first time, we applied the sol-gel derived amorphous InGaZnO4 film as electron transport layers (ETLs) in CsPbX3-based devices. In these devices, the carbon electrode deposited by screen printing replaced the unstable hole transport layer and the expensive metal electrode to obtain hole transport free carbon-based devices, which significantly simplifies the preparation process and reduces the production cost. With the application of amorphous InGaZnO4 films, devices show a relatively high power conversion efficiency (9.07%) and excellent thermal stability. Compared with the reported CsPbX3 devices using SnO2 or TiO2 ETLs, the performance of amorphous InGaZnO4 based devices has been significantly improved. This work provides a promising route to prepare highly thermally stable all-inorganic perovskite solar cells using a-IGZO films.

13.
Small ; 18(32): e2203471, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843876

RESUMEN

MAX phases are frequently dominated as precursors for the preparation of the star material MXene, but less eye-dazzling by their own potential applications. In this work, the electrocatalytic hydrogen evolution reaction (HER) activity of MAX phase is investigated. The MAX-derived electrocatalysts are prepared by a two-step in situ electrosynthesis process, an electrochemical etching step followed by an electrochemical deposition step. First, a Mo2 TiAlC2 MAX phase is electrochemically etched in 0.5 m H2 SO4 electrolyte. Just several hours, electrochemical dealloy etching of Mo2 TiAlC2 MAX powders by applying anode current can acquire a moderated HER performance, outperforming most of reported pure MXene. It is speculated that in situ superficially architecting endogenous MAX/amorphous carbide (MAC) improves its intrinsic catalytic activity. Subsequently, highly active metallic Pt nanoparticles immobilized on MAC (MAC@Pt) shows a transcendental overpotential of 40 mV versus RHE in 0.5 m H2 SO4 and 79 mV in 1.0 m KOH at the current density of 10 mA cm-2 without iR correction. Ultrahigh mass activity of MAC@Pt (1.5 A mgpt -1 ) at 100 mV overpotential is also achieved, 29-folds than those of commercial PtC catalysts.

14.
Small ; 18(27): e2201290, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35670492

RESUMEN

MXenes, as a 2D planar structure nanomaterial, were first reported in 2011. Due to their large specific surface area, high ductility, high electrical conductivity, strong hydrophilic surface, and high mechanical flexibility, MXenes have been extensively explored in the development of various functional materials with desired performances. This review is aimed to summarize the current progress in synthesis, modification, and applications of MXene-based composite films as electrode materials of flexible energy storage devices. In the synthesis of MXenes, the evolution and exploration of etchants are emphasized. Furthermore, in order to develop MXene-based composite films, the components used to modify the MXene nanoflakes, including 0D, 1D, and 2D nanomaterials, are summarized, and the perspectives and research direction of such materials are also discussed.

15.
Materials (Basel) ; 15(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35407799

RESUMEN

Photocatalytic technology using semiconductor catalysts is a promising candidate for light-polluted water treatment. In the past decades, TiO2-related nanomaterials and photocatalytic devices have been applied for sewage ex-situ treatment. However, in situ photocatalytic technology using functional membranes is still needed for many large-scale outdoor scenarios. This work successfully fabricated a robust reusable photocatalytic membrane by firmly immobilizing TiO2 nanoparticles on polymer membranes, supported by various plastic substrates, through an industrial membrane blowing process. The as-fabricated photocatalytic membrane was fabricated by all low-cost and eco-friendly commercial materials and exhibited stable photocatalytic performance in domestic sewage in situ treatment in natural conditions. This work is expected to promote the photocatalytic membrane for practical application.

16.
Materials (Basel) ; 15(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35160875

RESUMEN

Solar vapor generation through evaporation using photothermal materials is a promising candidate for seawater desalination. The Ti3C2 MXene membrane has exhibited photothermal behavior in solar water evaporation. However, dense packed two-dimensional (2D) MXene membrane with high reflection loss and insufficient vapor escape channels limited its solar evaporation performance. In this work, one-dimensional (1D) multi-walled carbon nanotubes (MWCNT) were added into 2D Ti3C2 nanosheets as the holder to form a 2D/1D hybrid photothermal membrane. Owing to the 2D/1D hybrid structure, more effective broadband solar absorption, water transportation and vapor escape were achieved.

17.
Recent Pat Nanotechnol ; 16(1): 3, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35086443
18.
Nanotechnology ; 32(10): 105205, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33260165

RESUMEN

Low temperature derived carbon electrodes are employed to fabricate low cost hole transport layer free perovskite solar cells, in which perovskite films annealed in glovebox and ambient air are used as the absorbers, respectively. Results suggest that the air annealed sample has bigger crystal grains and higher crystallinity, and the existence of a small amount of lead iodide which passivates grain boundaries contributes to a lower trap density. As a result, a maximum power conversion efficiency (PCE) of 13.07% was obtained on the air annealed device, which is higher than those of devices annealed in glovebox (11.25%). Furthermore, the stability of unencapsulated devices stored in wet (with humidity around 90% ± 5%) air atmosphere are investigated and the results prove that our devices exhibit good stability. In addition to rigid devices, flexible perovskite solar cells are also fabricated using the same procedure. The highest PCE of 11.53% is demonstrated on the champion flexible device, and 69% of its initial PCE can be maintained even after 2000 bending cycles with a bending radius of 2 mm. Our work provides a promising and simple rout for low-cost, air-stable, high-efficiency carbon perovskite solar cells for both large area production and flexible electronic devices industry.

19.
J Phys Chem Lett ; 11(17): 7035-7041, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32787324

RESUMEN

The photoinduced phase segregation (PIPS) of mixed-halide perovskites (MHPs), due to halogen migration, has reaped considerable attention for its retroaction on film photostability and photovoltaic output. Nevertheless, the original mechanism is still unclear. Herein, taking the representative CsPbIBr2 material as an example, a confocal laser scanning microscope (CLSM) technique was adopted to track the PIPS and dark recovery procedures. Besides the aggregation of iodide-rich (I-rich) domains at grain boundaries (GBs), some sporadic iodide "islands" with a swifter light response also appear throughout the polycrystalline films. It illustrates again that GBs are not essential for iodide aggregation. Furthermore, the iodide "islands" have substantial influence on a device's open-circuit voltage (Voc), resulting in an obvious plunge in the first tens of seconds. Results reveal the internal reason for the failure to reach the larger Voc outputs expected from wide-bandgap perovskites. Importantly, this finding can help promote the exploration of an efficient means to stabilize MHPs.

20.
Nano Lett ; 19(8): 5620-5627, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31244208

RESUMEN

CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs), including zero-dimensional (0D) quantum dots (QDs), one-dimensional (1D) nanorods (NRs), and two-dimensional (2D) nanoplatelets (NPLs), have shown promising performances in light-emitting diode (LED) and lasing applications. However, Auger recombination, one of the key processes that limit their performance, remains poorly understood in CsPbX3 2D NPLs and 1D NRs. We show that the biexciton Auger lifetimes of CsPbBr3 NPLs (NRs) scale linearly with the NPL lateral area (NR length) and deviates from the "universal volume scale law" that has been observed for QDs. These results are consistent with a model in which the Auger recombination rate for 1D NRs and 2D NPLs is a product of binary collision frequency in the nonquantum confined dimension and Auger probability per collision. Comparisons of Auger recombination in CsPbBr3 NCs of different dimensionalities and similar band gaps suggest that Auger probability increases in NCs with a higher number of confined dimensions. Compared to CdSe and PbSe NCs with the same dimensionalities and similar sizes, Auger recombination rates in 0D-2D CsPbBr3 NCs are over 10-fold faster. Fast Auger recombination in CsPbBr3 NCs shows their potentials for Auger-assisted up-conversion and single photon source, while suppressing Auger recombination may further enhance their performances in LED and lasing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...