Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(7): e2309356, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010877

RESUMEN

Coulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non-trivial band topology are atomic monolayers of tungsten ditelluride (WTe2 ), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe2 , in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate. Here, it shows that WTe2 is susceptible to a gate-tunable quantum phase transition, evident from an abrupt collapse of its 2D bulk energy gap upon ambipolar field-effect doping. Such gate tunability of a 2D TEI, into either n- and p-type semimetals, promises novel handles of control over non-trivial 2D superconductivity with excitonic pairing.

2.
Nanotechnology ; 34(45)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37524072

RESUMEN

Ultra-low temperature scanning tunnelling microscopy and spectroscopy (STM/STS) achieved by dilution refrigeration can provide unrivalled insight into the local electronic structure of quantum materials and atomic-scale quantum systems. Effective isolation from mechanical vibration and acoustic noise is critical in order to achieve ultimate spatial and energy resolution. Here, we report on the design and performance of an ultra-low vibration (ULV) laboratory hosting a customized but otherwise commercially available 40 mK STM. The design of the vibration isolation consists of a T-shaped concrete mass block (∼55t), suspended by actively controlled pneumatic springs, and placed on a foundation separated from the surrounding building in a 'room-within-a-room' design. Vibration levels achieved are meeting the VC-M vibration standard at >3 Hz, reached only in a limited number of laboratories worldwide. Measurement of the STM's junction noise confirms effective vibration isolation on par with custom built STMs in ULV laboratories. In this tailored low-vibration environment, the STM achieves an energy resolution of 43µeV (144 mK), promising for the investigation and control of quantum matter at atomic length scales.

3.
Nanotechnology ; 33(9)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34823227

RESUMEN

Structural engineering opens a door to manipulating the structures and thus tuning the properties of two-dimensional materials. Here, we report a reversible structural transition in honeycomb CuSe monolayer on Cu(111) through scanning tunneling microscopy and Auger electron spectroscopy (AES). Direct selenization of Cu(111) gives rise to the formation of honeycomb CuSe monolayers with one-dimensional moiré structures (stripe-CuSe), due to the asymmetric lattice distortions in CuSe induced by the lattice mismatch. Additional deposition of Se combined with post annealing results in the formation of honeycomb CuSe with quasi-ordered arrays of triangular holes (hole-CuSe), namely, the structural transition from stripe-CuSe to hole-CuSe. Further, annealing the hole-CuSe at higher temperature leads to the reverse structural transition, namely from hole-CuSe to stripe-CuSe. AES measurement unravels the Se content change in the reversible structural transition. Therefore, both the Se coverage and annealing temperature play significant roles in the reversible structural transition in CuSe on Cu(111). Our work provides insights in understanding of the structural transitions in two-dimensional materials.

4.
J Phys Chem Lett ; 11(13): 5044-5050, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32510955

RESUMEN

Here, we demonstrate two reliable routes for the fabrication of armchair-edge graphene nanoribbons (GNRs) on TbAu2/Au(111), belonging to a class of two-dimensional ferromagnetic rare earth-gold intermetallic compounds. On-surface synthesis directly on TbAu2 leads to the formation of GNRs, which are short and interconnected with each other. In contrast, the intercalation approach-on-surface synthesis of GNRs directly on Au(111) followed by rare earth intercalation-yields GNRs on TbAu2/Au(111), where both the ribbons and TbAu2 are of high quality comparable with those directly grown on clean Au(111). Besides, the as-grown ribbons retain the same band gap while changing from p-doping to weak n-doping mainly due to a change in the work function of the substrate after the rare earth intercalation. The intercalation approach might also be employed to fabricate other types of GNRs on various rare earth intermetallic compounds, providing platforms to tailor the electronic and magnetic properties of GNRs on magnetic substrates.

5.
J Phys Chem Lett ; 11(10): 4107-4112, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32368917

RESUMEN

Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, we present a systematic study on the structural and electronic properties of three novel rare earth-based intermetallic compounds, namely, ReAu2 (Re = Tb, Ho, and Er), on Au(111) via directly depositing rare earth metals onto the hot Au(111) surface. Scanning tunneling microscopy/spectroscopy measurements reveal very similar atomic structures and electronic properties, e.g., electronic states and surface work functions, for all these intermetallic compound systems because of the physical and chemical similarities between these rare earth elements. Further, these electronic properties are periodically modulated by the moiré structures caused by the lattice mismatches between ReAu2 and Au(111). These periodically modulated surfaces could serve as templates for the self-assembly of nanostructures. In addition, these two-dimensional rare earth-based intermetallic compounds provide platforms to investigate rare earth-related catalysis, magnetisms, etc. in the lower dimensions.

6.
Phys Chem Chem Phys ; 22(3): 1693-1700, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31895352

RESUMEN

A rare-earth compound on a metal may form a two-dimensional (2D) intermetallic compound whose properties can be further modulated by the underlying substrate periodicity and coupling. Here, we present a combinational and systematic investigation using scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations on erbium (Er) on Cu(111). Experimentally, an intriguing growth mode transition from a branched island to a fractal-like island has been observed depending on whether the deposition process of Er is interrupted for a certain duration: post-deposition effects, such as nucleation and island growth controlled by diffusion, play an essential role in altering the Er island edge and its activity. Upon annealing, the branched Er islands become strands of amorphous surface alloy; in contrast, the fractal-like islands (with additional Er atoms on top) give rise to a monolayer thick 2D ErCu2 intermetallic compound and display a moiré pattern. Theoretically, using DFT calculations, we found that the characteristic energy states, particularly the state in the unoccupied region around 582-663 meV, of the 2D ErCu2 intermetallic compound are position-dependent, consistent with STS measurements. The moiré pattern originating from the mismatch of the periodicities of the ErCu2 layer and the Cu(111) surface was identified to be responsible for the observed periodic modulation on the coupling interaction that affects the electronic structures. Our further DFT calculations on a free-standing ErCu2 monolayer found it to be a 2D ferromagnet with topological band structures. Our work should stimulate further studies on such 2D rare-earth-based nanostructures and exploration of the use of the tunable electronic structures in such atomically-thin layers.

7.
Science ; 365(6457): 1036-1040, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31488691

RESUMEN

The construction of atomically precise carbon nanostructures holds promise for developing materials for scientific study and nanotechnology applications. Here, we show that graphene origami is an efficient way to convert graphene into atomically precise, complex nanostructures. By scanning tunneling microscope manipulation at low temperature, we repeatedly fold and unfold graphene nanoislands (GNIs) along an arbitrarily chosen direction. A bilayer graphene stack featuring a tunable twist angle and a tubular edge connection between the layers is formed. Folding single-crystal GNIs creates tubular edges with specified chirality and one-dimensional electronic features similar to those of carbon nanotubes, whereas folding bicrystal GNIs creates well-defined intramolecular junctions. Both origami structural models and electronic band structures are computed to complement analysis of the experimental results. The present atomically precise graphene origami provides a platform for constructing carbon nanostructures with engineered quantum properties and, ultimately, quantum machines.

8.
Adv Mater ; 30(32): e1801838, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29938839

RESUMEN

Periodically hydrogenated graphene is predicted to form new kinds of crystalline 2D materials such as graphane, graphone, and 2D Cx Hy , which exhibit unique electronic properties. Controlled synthesis of periodically hydrogenated graphene is needed for fundamental research and possible electronic applications. Only small patches of such materials have been grown so far, while the experimental fabrication of large-scale, periodically hydrogenated graphene has remained challenging. In the present work, large-scale, periodically hydrogenated graphene is fabricated on Ru(0001). The as-fabricated hydrogenated graphene is highly ordered, with a √3 × âˆš3/R30° period relative to the pristine graphene. As the ratio of hydrogen and carbon is 1:3, the periodically hydrogenated graphene is named "one-third-hydrogenated graphene" (OTHG). The area of OTHG is up to 16 mm2 . Density functional theory calculations demonstrate that the OTHG has two deformed Dirac cones along one high-symmetry direction and a finite energy gap along the other directions at the Fermi energy, indicating strong anisotropic electrical properties. An efficient method is thus provided to produce large-scale crystalline functionalized graphene with specially desired properties.

9.
J Phys Chem B ; 122(2): 601-611, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28862462

RESUMEN

The growth of polycyclic aromatic hydrocarbon (PAH) molecular coronene film on various substrates and the subsequent doping of potassium under ultrahigh vacuum (UHV) conditions have been systematically investigated by low-temperature scanning tunneling microscopy and spectroscopy (STM/STS). The crystalline structures and molecular orientations of coronene thin films are both thickness-dependent and substrate-sensitive due to the competition between molecule-substrate interaction and intermolecular interaction. In mono- or bilayer films, coronene molecules are flat-lying on the surface with hexagonal lattice, whereas in multilayer films, the topmost molecules are in a standing-up but tilted configuration with rectangular lattice. In particular, a 2 × 1 superstructure with respect to that of bulk coronene is formed on thick KCl film. Furthermore, we have studied the potassium doped coronene monolayer and multilayer on Ag(100) and KCl/Ag(100) surface. For K-doped coronene monolayer, at certain doping ratio x = 3, the lowest unoccupied molecular orbital (LUMO) of coronene film moves to the Fermi level, and a splitting of the LUMO state is observed. Increased potassium doping would result in a filled LUMO state below the Fermi level. By contrast, no well-ordered structures are obtained in the K-doped coronene multilayers which are vulnerable to rather moderate annealing processes owing to their relatively weak bonding with the supporting substrates, implying a big challenge of growth of PAH thick films in vacuum. The differences in the crystal structures of coronene thin films compared with that in bulk crystals might shed insight on the controversies in the experimental results on the electronic properties of alkali-metal-doped PAHs.

11.
Nano Lett ; 17(2): 1161-1166, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28098458

RESUMEN

Silicon-based two-dimensional (2D) materials are uniquely suited for integration in Si-based electronics. Silicene, an analogue of graphene, was recently fabricated on several substrates and was used to make a field-effect transistor. Here, we report that when Ru(0001) is used as a substrate, a range of distinct monolayer silicon structures forms, evolving toward silicene with increasing Si coverage. Low Si coverage produces a herringbone structure, a hitherto undiscovered 2D phase of silicon. With increasing Si coverage, herringbone elbows evolve into silicene-like honeycomb stripes under tension, resulting in a herringbone-honeycomb 2D superlattice. At even higher coverage, the honeycomb stripes widen and merge coherently to form silicene in registry with the substrate. Scanning tunneling microscopy (STM) was used to image the structures. The structural stability and electronic properties of the Si 2D structures, the interaction between the Si 2D structures and the Ru substrate, and the evolution of the distinct monolayer Si structures were elucidated by density functional theory (DFT) calculations. This work paves the way for further investigations of monolayer Si structures, the corresponding growth mechanisms, and possible functionalization by impurities.

12.
Nano Lett ; 15(10): 6464-8, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26348981

RESUMEN

Doping graphene with boron has been difficult because of high reaction barriers. Here, we describe a low-energy reaction route derived from first-principles calculations and validated by experiments. We find that a boron atom on graphene on a ruthenium(0001) substrate can replace a carbon by pushing it through, with substrate attraction helping to reduce the barrier to only 0.1 eV, implying that the doping can take place at room temperature. High-quality graphene is grown on a Ru(0001) surface and exposed to B2H6. Scanning tunneling microscopy/spectroscopy and X-ray photoelectron spectroscopy confirmed that boron is indeed incorporated substitutionally without disturbing the graphene lattice.

13.
Philos Trans A Math Phys Eng Sci ; 372(2013): 20130015, 2014 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-24615151

RESUMEN

We review the way to fabricate large-scale, high-quality and single crystalline graphene epitaxially grown on Ru(0001) substrate. A moiré pattern of the graphene/Ru(0001) is formed due to the lattice mismatch between graphene and Ru(0001). This superstructure gives rise to surface charge redistribution and could behave as an ordered quantum dot array, which results in a perfect template to guide the assembly of organic molecular structures. Molecules, for example iron phthalocyanine and C60, on this template show how the molecule-substrate interaction makes different superstructures. These results show the possibility of constructing ordered molecular structures on graphene/Ru(0001), which is helpful for practical applications in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...