Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659743

RESUMEN

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

2.
Parkinsonism Relat Disord ; 119: 105935, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072719

RESUMEN

INTRODUCTION: Substantial heterogeneity between individual patients in the clinical presentation of Parkinson's disease (PD) has led to the classification of distinct PD subtypes. However, genetic susceptibility factors for specific PD subtypes are not well understood. Therefore, the present study aimed to investigate the genetics of PD heterogeneity by performing a genome-wide association study (GWAS) of PD subtypes. METHODS: A total of 799 PD patients were included and classified into tremor-dominant (TD) (N = 345), akinetic-rigid (AR) (N = 227), gait-difficulty (GD) (N = 82), and mixed (MX) (N = 145) phenotypic subtypes. After array genotyping and subsequent imputation, a total of 7,918,344 variants were assessed for association with each PD subtype using logistic regression models that were adjusted for age, sex, and the top five principal components of GWAS data. RESULTS: We identified one genome-wide significant association (P < 5 × 10-8), which was between the MIR3976HG rs7504760 variant and the AR subtype (Odds ratio [OR] = 6.12, P = 2.57 × 10-8). Suggestive associations (P < 1 × 10-6) were observed regarding TD for RP11-497G19.3/RP11-497G19.1 rs7304254 (OR = 3.33, P = 3.89 × 10-7), regarding GD for HES2 rs111473931 (OR = 3.18, P = 6.85 × 10-7), RP11-400D2.3/CTD-2012I17.1 rs149082205 (OR = 8.96, P = 9.08 × 10-7), and RN7SL408P/SGK1 rs56161738 (OR = 2.97, P = 6.19 × 10-7), and regarding MX for MMRN2 rs112991171 (OR = 4.98, P = 1.02 × 10-7). CONCLUSION: Our findings indicate that genetic variation may account for part of the clinical heterogeneity of PD. In particular, we found a novel genome-wide significant association between MIR3976HG variation and the AR PD subtype. Replication of these findings will be important in order to better define the genetic architecture of clinical variability in PD disease presentation.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Estudio de Asociación del Genoma Completo , Temblor/complicaciones , Oportunidad Relativa
3.
Nat Commun ; 14(1): 6801, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919278

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.


Asunto(s)
Receptor con Dominio Discoidina 2 , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Animales , Ratones , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Biología de Sistemas , Tauopatías/patología , Neuroglía/metabolismo
4.
medRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905059

RESUMEN

The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; ß : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; ß : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.

5.
Neurol Genet ; 9(5): e200086, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37476022

RESUMEN

Background and Objectives: Variants in the CWH43 gene have been associated with normal pressure hydrocephalus (NPH). We aimed to replicate these findings, identify additional CWH43 variants, and further define the clinical phenotype associated with CWH43 variants. Methods: We determined the prevalence of CWH43 variants by whole-genome sequencing (WGS) in 94 patients with NPH. The odds of having CWH43 variant carriers develop NPH were determined through comparison with 532 Mayo Clinic Biobank volunteers without a history of NPH. For patients with NPH, we documented the head circumference, prevalence of disproportionate enlargement of subarachnoid hydrocephalus (DESH), microvascular changes on MRI quantified by the Fazekas scale, and ambulatory response to ventriculoperitoneal shunting. Results: We identified rare (MAF <0.05) coding CWH43 variants in 15 patients with NPH. Ten patients (Leu533Terfs, n = 8; Lys696Asnfs, n = 2) harbored previously reported predicted loss-of-function variants, and combined burden analysis confirmed risk association with NPH (OR 2.60, 95% CI 1.12-6.03, p = 0.027). Additional missense variations observed included Ile292Thr (n = 2), Ala469Ser (n = 2), and Ala626Val (n = 1). Though not quite statistically significant, in single variable analysis, the odds of having a head circumference above the 75th percentile of normal controls was more than 5 times higher for CWH43 variant carriers compared with that for noncarriers (unadjusted OR 5.67, 95% CI 0.96-108.55, p = 0.057), and this was consistent after adjusting for sex and height (OR 5.42, 95% CI 0.87-106.37, p = 0.073). DESH was present in 56.7% of noncarriers and only 21.4% of carriers (p = 0.016), while sulcal trapping was also more prevalent among noncarriers (67.2% vs 35.7%, p = 0.030). All 8 of the 15 variant carriers who underwent ventriculoperitoneal shunting at our institution experienced ambulatory improvements. Discussion: CWH43 variants are frequent in patients with NPH. Predicted loss-of-function mutations were the most common; we identified missense mutations that require further study. Our findings suggest that congenital factors, rather than malabsorption or vascular dysfunction, are primary contributors to the CWH43-related NPH clinical syndrome.

6.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107206

RESUMEN

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Amiloidosis/patología , Animales , Encéfalo/patología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
7.
Nat Neurosci ; 25(8): 1020-1033, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915180

RESUMEN

The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Cognición , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Isoformas de Proteínas/metabolismo
8.
Aging Cell ; 21(5): e13606, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35388616

RESUMEN

Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Transcriptoma/genética
9.
Acta Neuropathol Commun ; 9(1): 93, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020725

RESUMEN

Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer's disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = -3.70 [95% CI -0.49--0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Angiopatía Amiloide Cerebral/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Isoformas de Proteínas/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad
10.
Nat Commun ; 12(1): 2311, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875655

RESUMEN

Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


Asunto(s)
Enfermedad de Alzheimer/genética , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica/métodos , Hipocampo/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Autopsia , Corteza Cerebral/patología , Femenino , Hipocampo/patología , Humanos , Aprendizaje Automático , Masculino , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Inhibidor de Proteína C/genética , Inhibidor de Proteína C/metabolismo , RNA-Seq/métodos , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Brain Pathol ; 31(3): e12945, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33709463

RESUMEN

TMEM106B has been recently implicated in multiple neurodegenerative diseases. Here, Rademakers et al. report a late-onset cerebellar Purkinje cell loss and progressive decline in motor function and gait deficits in a conventional Tmem106b-/- mouse model. By using high-power microscopy and bulk RNA sequencing, the authors further identify lysosomal and immune dysfunction as potential underlying mechanisms of the Purkinje cell loss.


Asunto(s)
Células de Purkinje , Animales , Modelos Animales de Enfermedad , Ratones
13.
Mol Neurodegener ; 15(1): 38, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660529

RESUMEN

Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer's disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion changes in AD brains that are robustly replicable across the three independently assessed cohorts. We applied three different algorithms including our in-house algorithm to identify cell intrinsic differentially expressed genes in individual cell types (CI-DEGs). We assessed the performance of all algorithms by comparison to single nucleus RNAseq data. We identified consensus CI-DEGs that are common to multiple brain regions. Despite significant overlap between consensus CI-DEGs and bulk-DEGs, many CI-DEGs were absent from bulk-DEGs. Consensus CI-DEGs and their enriched GO terms include genes and pathways previously implicated in AD or neurodegeneration, as well as novel ones. We demonstrated that the detection of CI-DEGs through computational deconvolution methods is promising and highlight remaining challenges. These findings provide novel insights into cell-intrinsic transcriptional changes of individual cell types in AD and may refine discovery and modeling of molecular targets that drive this complex disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Transcriptoma/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos
14.
Mol Biol Evol ; 34(7): 1743-1757, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419279

RESUMEN

Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53-0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology.


Asunto(s)
Anoplura/genética , Pediculus/genética , Simbiosis/genética , Animales , Bacterias/genética , Evolución Biológica , Evolución Molecular , Genoma Bacteriano , Genómica/métodos , Hominidae/genética , Humanos , Pan troglodytes/genética , Filogenia , Plásmidos/genética , Primates/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA