Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insects ; 15(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38786882

RESUMEN

Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.

2.
Cell Signal ; 110: 110815, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478958

RESUMEN

Skeletal muscle atrophy is defined by wasting or decrease in muscle mass owing to injury, aging, malnutrition, chronic disuse, or physical consequences of chronic illness. Under normal physiological conditions, a network of signal transduction pathways serves to balance muscle protein synthesis and proteolysis; however, metabolic shifts occur from protein synthesis to protein degradation that leads to a reduction in cross-sectional myofibers and can result in loss of skeletal muscle mass (atrophy) over time. Recent evidence highlights posttranslational modifications (PTMs) such as acetylation and phosphorylation in contractile dysfunction and muscle wasting. Indeed, histone deacetylase (HDAC) inhibitors have been shown to attenuate muscle atrophy and delay muscle damage in response to nutrient deprivation, in models of metabolic dysfunction and genetic models of muscle disease (e.g., muscle dystrophy). Despite our current understanding of lysine acetylation in muscle physiology, a role for HDACs in the regulation of muscle signal transduction remains a 'black box.' Using C2C12 myotubes stimulated with dexamethasone (Dex) as a model of muscle atrophy, we report that protein kinase C delta (PKCδ) phosphorylation decreased at threonine 505 (T505) and serine 643 (S643) in myotubes in response to muscle atrophy; these residues are important for PKCδ activity. Interestingly, PKCδ phosphorylation was restored/increased in myotubes treated with a pan-HDAC inhibitor or a class I selective HDAC inhibitor targeting HDACs1, -2, and - 3 in response to Dex. Moreover, we observed that Dex induced atrophy in skeletal muscle tissue in mice; this reduction in atrophy occurred rapidly, with weight loss noted by day 3 post-Dex and muscle weight loss noted by day 7. Similar to our findings in C2C12 myotubes, Dex attenuated phosphorylation of PKCδ at S643, while HDAC inhibition restored or increased PKCδ phosphorylation at both T505 and S643 in the tibialis anterior. Consistent with this hypothesis, we report that HDAC inhibition could not restore myotube size in response to Dex in the presence of a PKCδ inhibitor or when overexpressing a dominant negative PKCδ. Additionally, the overexpression of a constitutively active PKCδ prevented Dex-induced myotube atrophy. Combined, these data suggest that HDACs regulate muscle physiology via changes in intracellular signaling, namely PKCδ phosphorylation. Whether HDACs regulate PKCδ through canonical (e.g. gene-mediated regulation of phosphatases) or non-canonical (e.g. direct deacetylation of PKCδ to change phosphorylation states) mechanisms remain unclear and future research is needed to clarify this point.


Asunto(s)
Inhibidores de Histona Desacetilasas , Proteína Quinasa C-delta , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Fosforilación , Proteína Quinasa C-delta/metabolismo , Estudios Transversales , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Dexametasona/efectos adversos , Dexametasona/metabolismo , Pérdida de Peso
3.
Nat Commun ; 14(1): 4206, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452013

RESUMEN

Hemophilia A is the most common X-linked bleeding disorder affecting more than half-a-million individuals worldwide. Persons with severe hemophilia A have coagulation FVIII levels <1% and experience spontaneous debilitating and life-threatening bleeds. Advances in hemophilia A therapeutics have significantly improved health outcomes, but development of FVIII inhibitory antibodies and breakthrough bleeds during therapy significantly increase patient morbidity and mortality. Here we use sheep fetuses at the human equivalent of 16-18 gestational weeks, and we show that prenatal transplantation of human placental cells (107-108/kg) bioengineered to produce an optimized FVIII protein, results in considerable elevation in plasma FVIII levels that persists for >3 years post-treatment. Cells engraft in major organs, and none of the recipients mount immune responses to either the cells or the FVIII they produce. Thus, these studies attest to the feasibility, immunologic advantage, and safety of treating hemophilia A prior to birth.


Asunto(s)
Hemofilia A , Humanos , Animales , Femenino , Embarazo , Ovinos , Hemofilia A/genética , Factor VIII/genética , Factor VIII/metabolismo , Placenta/metabolismo , Coagulación Sanguínea , Feto/metabolismo
4.
Cell Rep ; 40(10): 111279, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070701

RESUMEN

Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFµg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFµg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFµg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFµg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFµg brains, with pronounced phenotypes in SFµg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.


Asunto(s)
Gravedad Alterada , Vuelo Espacial , Ingravidez , Animales , Drosophila/genética , Drosophila melanogaster , Ingravidez/efectos adversos
5.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34572749

RESUMEN

Reprogramming the tumor stroma is an emerging approach to circumventing the challenges of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36 could be utilized for this purpose. These studies are now expanded to identify the secreted factors responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+ SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36- FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression. We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1, SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs. In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for breast cancer treatment.

6.
Cell Res ; 30(3): 211-228, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32047269

RESUMEN

The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m6A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m6A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m6A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m6A-modified start codons in junction sequences.


Asunto(s)
Adenosina/análogos & derivados , Sistemas de Lectura Abierta , ARN Circular/metabolismo , Espermatocitos/metabolismo , Espermatogénesis , Adenosina/metabolismo , Adulto , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatocitos/citología , Adulto Joven
7.
SLAS Discov ; 25(3): 277-286, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31556780

RESUMEN

Mass spectrometry-based phosphoproteomics holds promise for advancing drug treatment and disease diagnosis; however, its clinical translation has thus far been limited. This is in part due to an unstandardized and segmented sample preparation process that involves cell lysis, protein digestion, peptide desalting, and phosphopeptide enrichment. Automating this entire sample preparation process will be key in facilitating standardization and clinical translation of phosphoproteomics. While peptide desalting and phosphopeptide enrichment steps have been individually automated, integrating these two extractions and, further, the entire process requires more advanced robotic platforms as well as automation-friendly extraction tools. Here we describe a fully automated peptide desalting and phosphopeptide enrichment method using IMCStips on a Hamilton STAR. Using our established automated method, we identified more than 10,000 phosphopeptides from 200 µg of HCT116 cell lysate without fractionation with >85% phosphopeptide specificities. Compared with titania-based Spin Tip products, the automated IMCStips-based method gave 50% higher phosphopeptide identifications. The method reproducibility was further assessed using multiple reaction monitoring (MRM) to show >50% phosphopeptide recoveries after the automated phosphopeptide extraction with coefficients of variation (CVs) of <20% over a 3-week period. The established automated method is a step toward standardization of the sample preparation of phosphopeptide samples and could be further expanded upon to create a fully automated "cells to phosphopeptides" method.


Asunto(s)
Espectrometría de Masas/métodos , Fosfopéptidos/aislamiento & purificación , Proteómica/métodos , Robótica/métodos , Automatización/métodos , Células HCT116 , Humanos , Fosfopéptidos/genética , Fosforilación/efectos de los fármacos
8.
Biosci Rep ; 38(5)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30061171

RESUMEN

Lysine residues undergo diverse and reversible post-translational modifications (PTMs). Lysine acetylation has traditionally been studied in the epigenetic regulation of nucleosomal histones that provides an important mechanism for regulating gene expression. Histone acetylation plays a key role in cardiac remodeling and function. However, recent studies have shown that thousands of proteins can be acetylated at multiple acetylation sites, suggesting the acetylome rivals the kinome as a PTM. Based on this, we examined the impact of obesity on protein lysine acetylation in the left ventricle (LV) of male c57BL/6J mice. We reported that obesity significantly increased heart enlargement and fibrosis. Moreover, immunoblot analysis demonstrated that lysine acetylation was markedly altered with obesity and that this phenomenon was cardiac tissue specific. Mass spectral analysis identified 2515 proteins, of which 65 were significantly impacted by obesity. Ingenuity Pathway Analysis® (IPA) further demonstrated that these proteins were involved in metabolic dysfunction and cardiac remodeling. In addition to total protein, 189 proteins were acetylated, 14 of which were significantly impacted by obesity. IPA identified the Cardiovascular Disease Pathway as significantly regulated by obesity. This network included aconitate hydratase 2 (ACO2), and dihydrolipoyl dehydrogenase (DLD), in which acetylation was significantly increased by obesity. These proteins are known to regulate cardiac function yet, the impact for ACO2 and DLD acetylation remains unclear. Combined, these findings suggest a critical role for cardiac acetylation in obesity-mediated remodeling; this has the potential to elucidate novel targets that regulate cardiac pathology.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Obesidad/metabolismo , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Dieta Alta en Grasa/efectos adversos , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteoma/análisis , Proteoma/metabolismo , Remodelación Ventricular
9.
Nat Cell Biol ; 20(5): 535-540, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695786

RESUMEN

The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Trastornos del Metabolismo de la Glucosa/enzimología , Trastornos del Metabolismo de la Glucosa/genética , Herencia Paterna , ARN Pequeño no Traducido/genética , Espermatozoides/enzimología , Animales , Biomarcadores/sangre , Glucemia/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Dieta Alta en Grasa , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Trastornos del Metabolismo de la Glucosa/sangre , Trastornos del Metabolismo de la Glucosa/diagnóstico , Herencia , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Conformación de Ácido Nucleico , Fenotipo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Relación Estructura-Actividad , Transcriptoma
10.
J Biomech ; 73: 99-107, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29661501

RESUMEN

Mechanical strain associated with the expanding uterus correlates with increased preterm birth rates. Mechanical signals result in a cascading network of protein phosphorylation events. These signals direct cellular activities and may lead to changes in contractile phenotype and calcium signaling. In this study, the complete phospho-proteome of uterine smooth muscle cells subjected to mechanical strain for 5 min was compared to un-strained controls. Statistically significant, differential phosphorylation events were annotated by Ingenuity Pathway Analysis to elucidate mechanically induced phosphorylation networks. Mechanical strain leads to the direct activation of ERK1/2, HSPB1, and MYL9, in addition to phosphorylation of PAK2, vimentin, DOCK1, PPP1R12A, and PTPN11 at previously unannotated sites. These results suggest a novel network reaction to mechanical strain and reveal proteins that participate in the activation of contractile mechanisms leading to preterm labor.


Asunto(s)
Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fosfoproteínas/metabolismo , Proteómica , Estrés Mecánico , Útero/citología , Adulto , Animales , Fenómenos Biomecánicos , Femenino , Humanos , Mecanotransducción Celular , Contracción Muscular , Fosforilación , Útero/fisiología , Adulto Joven
11.
Invest Ophthalmol Vis Sci ; 57(13): 5576-5585, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27768799

RESUMEN

PURPOSE: To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. METHODS: Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. RESULTS: Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. CONCLUSIONS: Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered.


Asunto(s)
Expresión Génica , Proteínas Musculares/genética , Músculos Oculomotores/metabolismo , ARN/genética , Estrabismo/genética , Tendones/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Proteínas Musculares/biosíntesis , Músculos Oculomotores/patología , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrabismo/metabolismo , Estrabismo/patología , Tendones/patología , Adulto Joven
12.
Data Brief ; 4: 591-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26322325

RESUMEN

The data described in this article is the subject of an article in the American Journal of Physiology: Cell Physiology, titled "The Human Uterine Smooth Muscle S-nitrosoproteome Fingerprint in Pregnancy, Labor, and Preterm Labor" (doi:10.1152/ajpcell.00198.2013) (Ulrich et al., 2013) [1]. The data described is a large scale mass spectrometry data set that defines the human uterine smooth muscle S-nitrosoproteome differences among laboring, non-laboring, preterm laboring tissue after treatment with S-nitrosoglutathione.

13.
Integr Mol Med ; 2(4): 261-269, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26413312

RESUMEN

The molecular mechanisms involved in human uterine quiescence during gestation and the induction of labor at term or preterm are not completely known. Preterm delivery is associated with major morbidity and mortality and current efforts to prevent delivery until term are largely ineffective. Identification and semi-quantification of proteomic changes in uterine smooth muscle during pregnancy will allow for targeted research into how quiescence is maintained and what changes are associated with induction of labor. Examining preterm labor in this context will provide potential therapeutic targets for the management of preterm labor. We have recently performed two dimensional liquid chromatography coupled with tandem mass spectrometry on myometrial proteins isolated from pregnant patients in labor, pregnant patients not in labor, and pregnant patients in labor preterm. Using a conservative false discovery rate of 1% we have identified 2132 protein groups using this method and semi-quantitative spectral counting shows 201 proteins that have disparate levels of expression in preterm laboring samples. To our knowledge this is the first large scale proteomic study examining human uterine smooth muscle and this initial work has provided a target list for future experiments that can address how changing protein levels are involved in the induction of labor at term and preterm.

14.
Am J Physiol Cell Physiol ; 305(8): C803-16, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23948706

RESUMEN

Molecular mechanisms involved in uterine quiescence during gestation and those responsible for induction of labor at term are incompletely known. More than 10% of babies born worldwide are premature and 1,000,000 die annually. Preterm labor results in preterm delivery in 50% of cases in the United States explaining 75% of fetal morbidity and mortality. There is no Food and Drug Administration-approved treatment to prevent preterm delivery. Nitric oxide-mediated relaxation of human uterine smooth muscle is independent of global elevation of cGMP following activation of soluble guanylyl cyclase. S-nitrosation is a likely mechanism to explain cGMP-independent relaxation to nitric oxide and may reveal S-nitrosated proteins as new therapeutic targets for the treatment of preterm labor. Employing S-nitrosoglutathione as an nitric oxide donor, we identified 110 proteins that are S-nitrosated in 1 or more states of human pregnancy. Using area under the curve of extracted ion chromatograms as well as normalized spectral counts to quantify relative expression levels for 62 of these proteins, we show that 26 proteins demonstrate statistically significant S-nitrosation differences in myometrium from spontaneously laboring preterm patients compared with nonlaboring patients. We identified proteins that were up-S-nitrosated as well as proteins that were down-S-nitrosated in preterm laboring tissues. Identification and relative quantification of the S-nitrosoproteome provide a fingerprint of proteins that can form the basis of hypothesis-directed efforts to understand the regulation of uterine contraction-relaxation and the development of new treatment for preterm labor.


Asunto(s)
Trabajo de Parto/metabolismo , Miometrio/metabolismo , Trabajo de Parto Prematuro/metabolismo , Proteínas/metabolismo , Proteoma , Útero/metabolismo , Adulto , Femenino , Guanilato Ciclasa/metabolismo , Humanos , Óxido Nítrico/metabolismo , Nitrosación , Embarazo , Receptores Citoplasmáticos y Nucleares/metabolismo , S-Nitrosoglutatión/química , Guanilil Ciclasa Soluble , Contracción Uterina
15.
PLoS One ; 7(5): e38283, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666499

RESUMEN

Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.


Asunto(s)
Clostridium perfringens/virología , Podoviridae/clasificación , Podoviridae/patogenicidad , Secuencia de Bases , Genoma Viral/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Podoviridae/genética , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/genética , Virión/metabolismo , Virulencia
16.
Biochemistry ; 48(38): 9047-60, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19670911

RESUMEN

Eclosion hormone (EH) is an integral component in the cascade regulating the behaviors culminating in emergence of an insect from its old exoskeleton. Little is known regarding the EH solution structure; consequently, we utilized a computational approach to generate a hypothetical structure for Manduca sexta EH. The de novo algorithm exploited the restricted conformational space of disulfide bonds (Cys14-Cys38, Cys18-Cys34, and Cys21-Cys49) and predicted secondary structure elements to generate a thermodynamically stable structure characterized by 55% helical content, an unstructured N-terminus, a helical C-terminus, and a solvent-exposed loop containing Trp28 and Phe29. Both the strain and pseudo energies of the predicted peptide compare favorably with those of known structures. The 62-amino acid peptide was synthesized, folded, assayed for activity, and structurally characterized to confirm the validity of the model. The helical content is supported by circular dichroism and hydrogen-deuterium exchange mass spectrometry. Fluorescence emission spectra and acrylamide quenching are consistent with the solvent exposure predicted for Trp28, which is shielded by Phe29. Furthermore, thermodynamically stable conformations that deviated only slightly from the predicted Manduca EH structure were generated in silico for the Bombyx mori and Drosophila melanogaster EHs, indicating that the conformation is not species-dependent. In addition, the biological activities of known mutants and deletion peptides were rationalized with the predicted Manduca EH structure, and we found that, on the basis of sequence conservation, functionally important residues map to two conserved hydrophobic clusters incorporating the C-terminus and the first loop.


Asunto(s)
Hormonas de Insectos/química , Manduca/química , Algoritmos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Fenómenos Biofísicos , Bombyx/química , Bombyx/genética , Dicroismo Circular , Simulación por Computador , Drosophila melanogaster/química , Drosophila melanogaster/genética , Interacciones Hidrofóbicas e Hidrofílicas , Hormonas de Insectos/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Manduca/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrometría de Fluorescencia
17.
BMC Genomics ; 10: 212, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19426499

RESUMEN

BACKGROUND: Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. RESULTS: The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. CONCLUSION: The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any significant anthocyanin content, exhibited increased photoprotection mechanisms under water deficit conditions. Water deficit increased ABA, proline, sugar and anthocyanin concentrations in Cabernet Sauvignon, but not Chardonnay berries, consistent with the hypothesis that ABA enhanced accumulation of these compounds. Water deficit increased the transcript abundance of lipoxygenase and hydroperoxide lyase in fatty metabolism, a pathway known to affect berry and wine aromas. These changes in metabolism have important impacts on berry flavor and quality characteristics. Several of these metabolites are known to contribute to increased human-health benefits.


Asunto(s)
Frutas/metabolismo , Redes y Vías Metabólicas/genética , Vitis/metabolismo , Agua/metabolismo , Ácido Abscísico/metabolismo , Aldehído-Liasas/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Lipooxigenasa/metabolismo , Odorantes , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Planta/metabolismo , Vitis/genética , Vino
18.
Proteomics ; 9(11): 2967-85, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19452453

RESUMEN

In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.


Asunto(s)
Proteínas 14-3-3/química , Proteínas de Arabidopsis/química , Proteómica/métodos , Proteínas Recombinantes de Fusión/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Secuencias de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Consenso , Electroforesis en Gel Bidimensional , Escherichia coli/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Isoformas de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
19.
BMC Genomics ; 8: 429, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-18034876

RESUMEN

BACKGROUND: Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. RESULTS: Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (> or =2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries. CONCLUSION: These results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética/genética , Vitis/genética , Vitis/metabolismo , Vino , Acetatos/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Señalización del Calcio/genética , Metabolismo de los Hidratos de Carbono/genética , Ritmo Circadiano/genética , Análisis por Conglomerados , Ciclopentanos/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genoma de Planta , Compuestos Heterocíclicos/metabolismo , Hidrocarburos/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/metabolismo , Fotosíntesis/genética , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroides/metabolismo , Vitis/crecimiento & desarrollo
20.
J Exp Bot ; 58(7): 1873-92, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17443017

RESUMEN

The impact of water deficit and salt stress on two important wine grape cultivars, Chardonnay and Cabernet Sauvignon, was investigated. Plants were exposed to increasing salinity and water deficit stress over a 16 d time period. Measurements of stem water potentials, and shoot and leaf lengths indicated that Chardonnay was more tolerant to these stresses than Cabernet Sauvignon. Shoot tips were harvested every 8 d for proteomic analysis using a trichloroacetic acid/acetone extraction protocol and two-dimensional gel electrophoresis. Proteins were stained with Coomassie Brilliant Blue, quantified, and then 191 unique proteins were identified using matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry. Peptide sequences were matched against both the NCBI nr and TIGR Vitis expressed sequence tag (EST) databases that had been implemented with all public Vitis sequences. Approximately 44% of the protein isoforms could be identified. Analysis of variance indicated that varietal difference was the main source of protein expression variation (40%). In stressed plants, reduction of the amount of proteins involved with photosynthesis, protein synthesis, and protein destination was correlated with the inhibition of shoot elongation. Many of the proteins up-regulated in Chardonnay were of unclassified or of unknown function, whereas proteins specifically up-regulated in Cabernet Sauvignon were involved in protein metabolism.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteómica , Vitis/metabolismo , Agua/metabolismo , Electroforesis en Gel Bidimensional , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Proteínas de Plantas/clasificación , Brotes de la Planta/metabolismo , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Proteoma , Cloruro de Sodio/farmacología , Vitis/efectos de los fármacos , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...