Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(12): 108400, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38077131

RESUMEN

Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ maize metabolic model, iZMA6517, and contextualized it with heat and cold stress transcriptomics data using expression distributed reaction flux measurement (EXTREAM) algorithm. Furthermore, implementing metabolic bottleneck analysis on contextualized models revealed differences between these stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy generation bottlenecks. We also performed thermodynamic driving force analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature of temperature stress responses. Thus, a temperature-tolerant maize ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-energy generation axis. We experimentally inoculated maize root with a beneficial mycorrhizal fungus, Rhizophagus irregularis, and as a proof-of-concept demonstrated its efficacy in alleviating temperature stress. Overall, this study will guide the engineering effort of temperature stress-tolerant maize ideotypes.

2.
J Exp Bot ; 73(1): 275-291, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34554248

RESUMEN

The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N-) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.


Asunto(s)
Nitrógeno , Zea mays , Aminoácidos , Biomasa , Raíces de Plantas , Zea mays/genética
3.
Commun Biol ; 4(1): 1095, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535763

RESUMEN

Cytosolic glutamine synthetase (GS1) is the enzyme mainly responsible of ammonium assimilation and reassimilation in maize leaves. The agronomic potential of GS1 in maize kernel production was investigated by examining the impact of an overexpression of the enzyme in the leaf cells. Transgenic hybrids exhibiting a three-fold increase in leaf GS activity were produced and characterized using plants grown in the field. Several independent hybrids overexpressing Gln1-3, a gene encoding cytosolic (GS1), in the leaf and bundle sheath mesophyll cells were grown over five years in different locations. On average, a 3.8% increase in kernel yield was obtained in the transgenic hybrids compared to controls. However, we observed that such an increase was simultaneously dependent upon both the environmental conditions and the transgenic event for a given field trial. Although variable from one environment to another, significant associations were also found between two GS1 genes (Gln1-3 and Gln1-4) polymorphic regions and kernel yield in different locations. We propose that the GS1 enzyme is a potential lead for producing high yielding maize hybrids using either genetic engineering or marker-assisted selection. However, for these hybrids, yield increases will be largely dependent upon the environmental conditions used to grow the plants.


Asunto(s)
Clima , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Tiempo (Meteorología) , Zea mays/fisiología , Alelos , Citosol , Glutamato-Amoníaco Ligasa/metabolismo , Hibridación Genética , Fitomejoramiento , Proteínas de Plantas/metabolismo , Semillas/genética , Estados Unidos , Zea mays/enzimología , Zea mays/genética
4.
J Exp Bot ; 71(15): 4469-4479, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32157312

RESUMEN

Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.


Asunto(s)
Micorrizas , Suelo , Bacterias , Hongos , Nitrógeno , Raíces de Plantas/química , Microbiología del Suelo , Simbiosis
5.
Plants (Basel) ; 9(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973049

RESUMEN

Maize plants overexpressing NADH-GOGAT were produced in order to determine if boosting 2-Oxoglurate production used as a carbon skeleton for the biosynthesis of amino acids will improve plant biomass and kernel production. The NADH-GOGAT enzyme recycles glutamate and incorporates carbon skeletons into the ammonium assimilation pathway using the organic acid 2-Oxoglutarate as a substrate. Gene pyramiding was then conducted with NAD-IDH and NADH-GDH, two enzymes also involved in the synthesis of 2-Oxoglurate. NADH-GOGAT overexpression was detrimental for shoot biomass production but did not markedly affect kernel yield. Additional NAD-IDH and NADH-GDH activity did not improve plant performance. A decrease in kernel production was observed when NADH-GDH was pyramided to NADH-GOGAT and NAD-IDH. This decrease could not be restored even when additional cytosolic GS activity was present in the plants overexpressing the three enzymes producing 2-Oxoglutarate. Detailed leaf metabolic profiling of the different transgenic plants revealed that the NADH-GOGAT over-expressors were characterized by an accumulation of amino acids derived from glutamate and a decrease in the amount of carbohydrates further used to provide carbon skeletons for its synthesis. The study suggests that 2-Oxoglutarate synthesis is a key element acting at the interface of carbohydrate and amino acid metabolism and that its accumulation induces an imbalance of primary carbon and nitrogen metabolism that is detrimental for maize productivity.

7.
PLoS One ; 12(3): e0174576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28362815

RESUMEN

Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number of metabolites exhibited a maize-genotype specific pattern of accumulation, suggesting that the highly diverse maize genetic resources could be further exploited in terms of beneficial plant-bacterial interactions for optimizing maize growth, with reduced N fertilization inputs.


Asunto(s)
Azospirillum brasilense/metabolismo , Herbaspirillum/metabolismo , Bacterias Fijadoras de Nitrógeno/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Zea mays/metabolismo , Zea mays/microbiología
8.
Plant Cell ; 29(5): 919-943, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28396554

RESUMEN

A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.


Asunto(s)
Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Carbono/metabolismo , Variación Genética/genética , Variación Genética/fisiología , Metabolómica , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Zea mays/genética
9.
Plant Sci ; 252: 347-357, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717471

RESUMEN

Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine.


Asunto(s)
Variación Genética , Floema/metabolismo , Zea mays/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
10.
BMC Genomics ; 15: 1005, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410248

RESUMEN

BACKGROUND: To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. RESULTS: The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. CONCLUSIONS: This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.


Asunto(s)
Citosol/enzimología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glutamato-Amoníaco Ligasa/genética , Mutación/genética , Zea mays/enzimología , Zea mays/genética , Regulación Enzimológica de la Expresión Génica , Glutamato-Amoníaco Ligasa/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Zea mays/crecimiento & desarrollo
11.
J Exp Bot ; 63(14): 5017-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22936829

RESUMEN

Linking plant phenotype to gene and protein expression and also to metabolite synthesis and accumulation is one of the main challenges for improving agricultural production worldwide. Such a challenge is particularly relevant to crop nitrogen use efficiency (NUE). Here, the differences in leaf gene transcript, protein, and metabolite accumulation in maize subjected to long-term nitrogen (N)-deficient growth conditions at two important stages of plant development have been studied. The impact of N deficiency was examined at the transcriptomic, proteomic, and metabolomic levels. It was found that a number of key plant biological functions were either up- or down-regulated when N was limiting, including major alterations to photosynthesis, carbon (C) metabolism, and, to a lesser extent, downstream metabolic pathways. It was also found that the impact of the N deficiency stress resembled the response of plants to a number of other biotic and abiotic stresses, in terms of transcript, protein, and metabolite accumulation. The genetic and metabolic alterations were different during the N assimilation and the grain-filling period, indicating that plant development is an important component for identifying the key elements involved in the control of plant NUE. It was also found that integration of the three 'omics' studies is not straightforward, since different levels of regulation seem to occur in a stepwise manner from gene expression to metabolite accumulation. The potential use of these 'omics' studies is discussed with a view to improve our understanding of whole plant nitrogen economics, which should have applications in breeding and agronomy.


Asunto(s)
Perfilación de la Expresión Génica , Metaboloma , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteoma/genética , Zea mays/genética , Zea mays/metabolismo , Cromatografía Liquida , Análisis de Secuencia por Matrices de Oligonucleótidos , Espectrometría de Masas en Tándem , Zea mays/crecimiento & desarrollo
12.
New Phytol ; 194(2): 440-452, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22329725

RESUMEN

Quantitative trait loci (QTLs) for the main steps of nitrogen (N) metabolism in the developing ear of maize (Zea mays L.) and their co-localization with QTLs for kernel yield and putative candidate genes were searched in order to identify chromosomal regions putatively involved in the determination of yield. During the grain-filling period, the changes in physiological traits were monitored in the cob and in the developing kernels, representative of carbon and N metabolism in the developing ear. The correlations between these physiological traits and traits related to yield were examined and localized with the corresponding QTLs on a genetic map. Glycine and serine metabolism in developing kernels and the cognate genes appeared to be of major importance for kernel production. The importance of kernel glutamine synthesis in the determination of yield was also confirmed. The genetic and physiological bases of N metabolism in the developing ear can be studied in an integrated manner by means of a quantitative genetic approach using molecular markers and genomics, and combining agronomic, physiological and correlation studies. Such an approach leads to the identification of possible new regulatory metabolic and developmental networks specific to the ear that may be of major importance for maize productivity.


Asunto(s)
Agricultura , Variación Genética , Nitrógeno/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Estudios de Asociación Genética , Patrón de Herencia/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Zea mays/metabolismo
13.
J Exp Bot ; 62(7): 2309-18, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21112957

RESUMEN

During the grain-filling period of maize, the changes in metabolite content, enzyme activities, and transcript abundance of marker genes of amino acid synthesis and interconversion and carbon metabolism in three lines F2, Io, and B73 have been monitored in the cob and in the kernels. An integrative statistical approach using principal component analysis (PCA) and hierarchical clustering of physiological and transcript abundance data in the three maize lines was performed to determine if it was possible to link the expression of a physiological trait and a molecular biomarker to grain yield and its components. In this study, it was confirmed that, in maize, there was a genetic and organ-specific control of the main steps of nitrogen (N) and carbon metabolism in reproductive sink organs during the grain-filling period. PCA analysis allowed the identification of groups of physiological and molecular markers linked to either a genotype, an organ or to both biological parameters. A hierarchical clustering analysis was then performed to identify correlative relationships existing between these markers and agronomic traits related to yield. Such a clustering approach provided new information on putative marker traits that could be used to improve yield in a given genetic background. This can be achieved using either genetic manipulation or breeding to increase transcript abundance for the genes encoding the enzymes glutamine synthetase (GS), alanine amino transferase (AlaAT), aspartate amino transferase (AspAT), and Δ1-pyrroline-5-carboxylate synthetase (P5CS).


Asunto(s)
Variación Genética , Nitrógeno/metabolismo , Zea mays/genética , Zea mays/metabolismo , Alanina Transaminasa/genética , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Endogamia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Sitios de Carácter Cuantitativo , Zea mays/química , Zea mays/enzimología
14.
Plant Biotechnol J ; 8(9): 966-78, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20444205

RESUMEN

Nitrogen (N) metabolism was characterized in the developing ear of glutamine synthetase deficient mutants (gln1-3, gln1-4 and gln1-3/gln1-4) of maize exhibiting a reduction in kernel yield. During the grain-filling period, the metabolite contents, enzyme activities and steady-state levels of transcripts for marker genes of amino acid synthesis and interconversion were monitored in the cob and kernels. The ear of gln1-3 and gln1-3/gln1-4 had a higher free amino acid content and a lower C/N ratio, when compared to the wild type. The free ammonium concentrations were also much higher in gln1-3/gln1-4, and Asn accumulation was higher in gln1-3 and gln1-3/gln1-4. The level of transcripts of ZmAS3 and ZmAS4, two genes encoding asparagine synthetase, increased in the 'aborted kernels' of gln1-3 and gln1-3/gln1-4. The results show that N metabolism is clearly different in developing and 'aborted kernels'. The data support the hypothesis that N accumulated in 'aborted kernels' is remobilized via the cob to developing kernels using Asn as a transport molecule. The two genes ZmAS3 and ZmAS4 are likely to play an important role during this process.


Asunto(s)
Asparagina/metabolismo , Citosol/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Isoenzimas/metabolismo , Nitrógeno/metabolismo , Zea mays/enzimología , Zea mays/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glutamato-Amoníaco Ligasa/genética , Isoenzimas/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zea mays/genética
15.
New Phytol ; 184(2): 340-352, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656302

RESUMEN

*The main steps of nitrogen (N) metabolism were characterized in the developing ear of the two maize (Zea mays) lines F2 and Io, which were previously used to investigate the genetic basis of nitrogen use efficiency (NUE) in relation to yield. *During the grain-filling period, we monitored changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of amino acid synthesis and interconversion in the cob and the kernels. *Under low N fertilization conditions, line Io accumulated glutamine, asparagine and alanine preferentially in the developing kernels, whereas in line F2, glutamine and proline were the predominant amino acids. Quantification of the mRNA-encoding enzymes involved in asparagine, alanine and proline biosynthesis confirmed that the differences observed between the two lines at the physiological level are likely to be attributable to enhanced expression of the cognate genes. *Integrative analysis of physiological and gene expression data indicated that the developing ear of line Io had higher N use and transport capacities than line F2. Thus, in maize there is genetic and environmental control of N metabolism not only in vegetative source organs but also in reproductive sink organs.


Asunto(s)
Aminoácidos/biosíntesis , Nitrógeno/metabolismo , Zea mays/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Análisis de Varianza , Grano Comestible/crecimiento & desarrollo , Fertilizantes , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , ARN Mensajero/metabolismo , Alineación de Secuencia , Zea mays/genética , Zea mays/crecimiento & desarrollo
16.
Plant Cell ; 18(11): 3252-74, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17138698

RESUMEN

The roles of two cytosolic maize glutamine synthetase isoenzymes (GS1), products of the Gln1-3 and Gln1-4 genes, were investigated by examining the impact of knockout mutations on kernel yield. In the gln1-3 and gln1-4 single mutants and the gln1-3 gln1-4 double mutant, GS mRNA expression was impaired, resulting in reduced GS1 protein and activity. The gln1-4 phenotype displayed reduced kernel size and gln1-3 reduced kernel number, with both phenotypes displayed in gln1-3 gln1-4. However, at maturity, shoot biomass production was not modified in either the single mutants or double mutants, suggesting a specific impact on grain production in both mutants. Asn increased in the leaves of the mutants during grain filling, indicating that it probably accumulates to circumvent ammonium buildup resulting from lower GS1 activity. Phloem sap analysis revealed that unlike Gln, Asn is not efficiently transported to developing kernels, apparently causing reduced kernel production. When Gln1-3 was overexpressed constitutively in leaves, kernel number increased by 30%, providing further evidence that GS1-3 plays a major role in kernel yield. Cytoimmunochemistry and in situ hybridization revealed that GS1-3 is present in mesophyll cells, whereas GS1-4 is specifically localized in the bundle sheath cells. The two GS1 isoenzymes play nonredundant roles with respect to their tissue-specific localization.


Asunto(s)
Citosol/enzimología , Grano Comestible/economía , Grano Comestible/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Isoenzimas/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/aislamiento & purificación , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación/genética , Fenotipo , Floema/enzimología , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/ultraestructura , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Brotes de la Planta/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Xilema/enzimología , Zea mays/citología , Zea mays/ultraestructura
17.
New Phytol ; 172(4): 696-707, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17096795

RESUMEN

In maize (Zea mays), nitrogen (N) remobilization and postflowering N uptake are two processes that provide amino acids for grain protein synthesis. To study the way in which N is allocated to the grain and to the stover, two different 15N-labelling techniques were developed. 15NO(3-) was provided to the soil either at the beginning of stem elongation or after silking. The distribution of 15N in the stover and in the grain was monitored by calculating relative 15N-specific allocation (RSA). A nearly linear relationship between the RSA of the kernels and the RSA of the stover was found as a result of two simultaneous N fluxes: N remobilization from the stover to the grain, and N allocation to the stover and to the grain originating from N uptake. By modelling the 15N fluxes, it was possible to demonstrate that, as a consequence of protein turnover, a large proportion of the amino acids synthesized from the N taken up after silking were integrated into the proteins of the stover, and these proteins were further hydrolysed to provide N to the grain.


Asunto(s)
Nitrógeno/metabolismo , Zea mays/metabolismo , Marcaje Isotópico/métodos , Modelos Biológicos , Isótopos de Nitrógeno , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Zea mays/crecimiento & desarrollo
18.
Plant Physiol ; 140(3): 1085-94, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16461378

RESUMEN

Diurnal variations in nitrate reductase (NR) activity and nitrogen metabolites were examined in wild-type Nicotiana plumbaginifolia and transformants with various degrees of NR deregulation. In the C1 line, NR was only deregulated at the transcriptional level by placing the NR gene under the control of the cauliflower mosaic virus 35S RNA promoter. In the Del8 and S521D lines, NR was additionally deregulated at the posttranslational level either by a deletion mutation in the N-terminal domain or by a mutation of the regulatory phosphorylation site (serine-521). Posttranslational regulation was essential for pronounced diurnal variations in NR activity. Low nitrate content was related to deregulation of NR, whereas the level of total free amino acids was much higher in plants with fully deregulated NR. Abolishing transcriptional and posttranslational regulation (S521D plants) resulted in an increase of glutamine and asparagine by a factor of 9 and 14, respectively, compared with wild type, whereas abolishing transcriptional regulation (C1 plants) only resulted in increases of glutamine and asparagine by factors <2. Among the minor amino acids, isoleucine and threonine, in particular, showed enhanced levels in S521D. Nitrate uptake rates were the same in S521D and wild type as determined with (15)N feeding. Deregulation of NR appears to set the level of certain amino acids, whereas diurnal variations were still determined by light/dark. Generally, deregulation of NR at the transcriptional level did not have much influence on metabolite levels, but additional deregulation at the posttranslational level resulted in profound changes of nitrogen metabolite levels.


Asunto(s)
Aminoácidos/metabolismo , Nicotiana/enzimología , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Procesamiento Proteico-Postraduccional , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Luz , Nitrato-Reductasa/genética , Nitrógeno/metabolismo , Isótopos de Nitrógeno/análisis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN Mensajero/metabolismo , Nicotiana/genética
19.
New Phytol ; 167(2): 483-92, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15998400

RESUMEN

Here, nitrogen management within the plant was compared in an early-senescing maize hybrid and in a late-senescing maize hybrid, both grown under field conditions with a high fertilisation input involving large quantities of fertiliser. We monitored, in representative leaf stages, the changes in metabolite content, enzyme activities and steady-state levels of transcripts for marker genes of N primary assimilation, N recycling and leaf senescence. The hybrids differed in terms of persistence of leaf greenness, the expression of marker genes and the concentration of enzymes used to describe the transition from N assimilation to N recycling. The transcription of leaf-senescence marker genes did not differ. Agronomic studies confirmed the ability of the late-senescing hybrid to absorb and store more N in shoots. Despite the differences in the mode of N management adopted by the two hybrids, we conclude that leaf senescence occurs independently of the source-to-sink transition at the high level of fertilisation used involving large quantities of fertiliser. The possibility of improving N metabolic efficiency in the latest maize hybrids is discussed.


Asunto(s)
Nitrógeno/metabolismo , Zea mays/genética , Zea mays/metabolismo , Agricultura , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hibridación Genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Zea mays/crecimiento & desarrollo
20.
Planta ; 219(5): 884-93, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15197593

RESUMEN

We investigated the physiological consequences for nitrogen metabolism and growth of the deregulated expression of an N-terminal-deleted tobacco nitrate reductase in two lines of potato (Solanum tuberosum L. cv Safrane). The transgenic plants showed a higher biomass accumulation, especially in tubers, but a constant nitrogen content per plant. This implies that the transformed lines had a reduced nitrogen concentration per unit of dry weight. A severe reduction in nitrate concentrations was also observed in all organs, but was more apparent in tubers where nitrate was almost undetectable in the transgenic lines. In leaves and roots, but not tubers, this nitrate decrease was accompanied by a statistically significant increase in the level of malate, which acts as a counter-anion for nitrate reduction. Apart from glutamine in tubers, no major changes in amino acid concentration were seen in leaves, roots or tubers. We conclude that enhancement of nitrate reduction rate leads to higher biomass production, probably by allowing a better allocation of N-resources to photosynthesis and C-metabolism.


Asunto(s)
Nicotiana/enzimología , Nitrato Reductasas/genética , Solanum tuberosum/genética , Biomasa , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nitrato-Reductasa , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Solanum tuberosum/enzimología , Solanum tuberosum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...