Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hum Kinet ; 87: 81-92, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37229416

RESUMEN

Environmental temperature can impact exercise-induced blood oxidative stress; however, the effects of heat acclimation on this response have not been fully elucidated. The purpose of the study was to investigate the effects of hot (33°C) and room temperature (20°C) environments on post-exercise blood oxidative stress responses following 15 temperature acclimation sessions. Untrained participants (n = 38, 26 ± 7 years, VO2peak = 38.0 ± 7.2 years) completed 15 temperature acclimation sessions of a cycling bout at an intensity perceived as "hard" in either a hot (33°C) or room temperature (20°C) environment. Pre and post acclimation exercise tolerance trials were conducted, which involved cycling at 50% Wpeak for one hour. Blood sampling occurred before exercise, immediately after, two hours, and four hours after the exercise tolerance trials. Blood samples were analyzed for oxidative stress markers including lipid hydroperoxides, 8-isoprostanes, protein carbonyls, 3-nitrotyrosine, ferric-reducing ability of plasma, and Trolox-equivalent antioxidant capacity. Exercise-dependent increases were observed in lipid hydroperoxides, Trolox-equivalent antioxidant capacity, and ferric-reducing ability of plasma (p < 0.001). Considering exercise-induced elevations in markers of blood oxidative stress, there were no differences observed between environmental temperatures before or after the acclimation training period.

2.
Wilderness Environ Med ; 33(1): 17-24, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34887190

RESUMEN

INTRODUCTION: Those who work and recreate outdoors experience woodsmoke exposure during fire season. Exercise during woodsmoke exposure harms the cardiovascular system, but the acute physiologic and biochemical responses are understudied. The purpose of this pilot laboratory-based study was to examine the effect of exercise during woodsmoke exposure on acute indicators of cardiovascular function, including heart rate variability (HRV), pulse wave velocity (PWV), blood pressure (BP), augmentation index (AIx), and blood oxidative stress. METHODS: Ten participants performed 2 moderate-intensity exercise (70% V˙O2 max) trials (clean air 0 µg·m-3, woodsmoke 250 µg·m-3) in a crossover design. HRV, PWV, BP, AIx, and blood oxidative stress were measured before, after, and 90 min after exercise for each trial. Blood oxidative stress was quantified through lipid damage (LOOH, 8-ISO), protein damage (3-NT, PC), and antioxidant capacity (TEAC). RESULTS: A 45-min woodsmoke exposure combined with moderate-intensity exercise did not result in a statistically significant difference in HRV, PWV, BP, AIx, or oxidative stress (P>0.05). CONCLUSIONS: Despite the known deleterious effects of smoke inhalation, moderate-intensity aerobic exercise while exposed to woodsmoke particulate matter (250 µg·m-3) did not result in a statistically significant difference in HRV, PWV, or blood oxidative stress in this methodologic context. Although findings do not negate the negative impact of woodsmoke inhalation, additional research approaches are needed to better understand the acute effects of smoke exposure on the cardiovascular system.


Asunto(s)
Ejercicio Físico , Análisis de la Onda del Pulso , Aorta , Presión Sanguínea , Ejercicio Físico/fisiología , Humanos , Estrés Oxidativo , Humo/efectos adversos
3.
Front Physiol ; 12: 691245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305644

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal, progressive muscle disease caused by the absence of functional dystrophin protein. Previous studies in mdx mice, a common DMD model, identified impaired autophagy with lysosomal insufficiency and impaired autophagosomal degradation as consequences of dystrophin deficiency. Thus, we hypothesized that lysosomal abundance would be decreased and degradation of autophagosomes would be impaired in muscles of D2-mdx mice. To test this hypothesis, diaphragm and gastrocnemius muscles from 11 month-old D2-mdx and DBA/2J (healthy) mice were collected. Whole muscle protein from diaphragm and gastrocnemius muscles, and protein from a cytosolic fraction (CF) and a lysosome-enriched fraction (LEF) from gastrocnemius muscles, were isolated and used for western blotting. Initiation of autophagy was not robustly activated in whole muscle protein from diaphragm and gastrocnemius, however, autophagosome formation markers were elevated in dystrophic muscles. Autophagosome degradation was impaired in D2-mdx diaphragms but appeared to be maintained in gastrocnemius muscles. To better understand this muscle-specific distinction, we investigated autophagic signaling in CFs and LEFs from gastrocnemius muscles. Within the LEF we discovered that the degradation of autophagosomes was similar between groups. Further, our data suggest an expanded, though impaired, lysosomal pool in dystrophic muscle. Notably, these data indicate a degree of muscle specificity as well as model specificity with regard to autophagic dysfunction in dystrophic muscles. Stimulation of autophagy in dystrophic muscles may hold promise for DMD patients as a potential therapeutic, however, it will be critical to choose the appropriate model and muscles that most closely recapitulate findings from human patients to further develop these therapeutics.

4.
J Occup Environ Med ; 63(7): 594-599, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34184652

RESUMEN

OBJECTIVE: To identify physiologic stressors related to cardiovascular disease via changes in metabolic, inflammatory, and oxidative stress biomarkers during 2 weeks of preseason training in wildland firefighters (WLFFs). METHODS: Participants were recruited from a local hotshot crew and monitored during preseason training. Fitness was assessed via the Bureau of Land Management fitness challenge. Venipuncture blood was collected on days 1, 4, 8, and 11 and analyzed for changes in a lipid and glucose panel, C-reactive protein, and oxidative stress markers 8-isoprostane (8ISO), 3-nitrotyrosine (3NT), lipid hydroperoxides (LOOH), and protein carbonyls. RESULTS: The high physical demands of training resulted in significant (P < 0.05) reductions in total cholesterol, glucose, and hemoglobin A1c. A main effect for time was observed in 8ISO, 3NT, and LOOH. CONCLUSIONS: Alterations in metabolic and oxidative stress markers suggest an acute, high-intensity physical stress during WLFF preseason training.


Asunto(s)
Enfermedades Cardiovasculares , Bomberos , Biomarcadores , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Factores de Riesgo
5.
J Occup Environ Med ; 63(4): 350-356, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769401

RESUMEN

OBJECTIVE: To document the effects of wildland firefighter (WLFF) critical training (CT) on physiologic markers of muscle damage and acute overreaching. METHODS: Eighteen male and three female WLFFs were studied during an 11-day CT. Upper-body (US), lower-body (LS) muscle soreness and body weight (BW) were collected daily. Blood was collected on days 1, 4, 8, and 11 to measure creatine kinase (CK), lactate dehydrogenase (LDH), cortisol, and testosterone. Skinfolds were taken on days 1 and 11 to estimate body fat (BF) and lean body weight (LBW). RESULTS: CT resulted in a significant depression in BF and elevation in LBW, while main effects of time were seen in US, LS, CK, LDH, cortisol, and testosterone/cortisol ratio (P < 0.05). CONCLUSION: These data suggest WLFFs undergo significant physiological stressors resulting in muscle soreness, damage, and possible overreaching during CT.


Asunto(s)
Bomberos , Creatina Quinasa , Femenino , Humanos , L-Lactato Deshidrogenasa , Masculino , Músculos , Mialgia
6.
J Sports Sci ; 39(12): 1356-1365, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33423613

RESUMEN

Hypobaria and hypoxia exert independent effects on oxidative stress during exercise, while combined effectson the post-exercise recovery period remain unclear.Accordingly, this study examined the recovery period during lab-simulated hypoxic and hypobaric conditions following exercise-induced oxidative stress. Participants (n=13) performed 60-minutes of cycling (70% watts max) in a normobaric normoxic environment followed by a four-hour recovery under three conditions; 1000m normobaric normoxia (NN, 675mmHg), 4400m normobaric hypoxia (NH, 675mmHg), or 4400m hypobaric hypoxia (HH, 440mmHg). Blood samples collected at Pre, Post, 2-Hours (2-HR), and 4-Hours (4-HR) post-exercise were analyzed fora potential increase in biochemical modifications of proteins(protein carbonyls, PC; 3-nitrotyrosines, 3NT) lipids (lipid hydroperoxides, LOOH; 8-isoprostanes, 8-ISO), and antioxidant capacity (FRAP, TEAC). Gene transcripts (EPAS, HMOX1, SOD2, NFE2L2) were quantified by qRT-PCR from muscle biopsies taken Pre and Post exercise. Hypoxia and hypobaria had no effect throughout recovery. Post-exercise TEAC (p=0.041), FRAP (p=0.013), and 8-ISO (p=0.044) increased, while PC (p=0.002) and 3-NT (p=0.032) were decreased. LOOH was lower in Post (p=0.018) NH trial samples. Exercise-dependent increases occurred in NFE2L2 (p=0.003), HMXO1 (p<0.001), SOD2 (p=0.046), and EPAS (p=0.038). Exercise recovery under conditions of NH and HH did not impact blood oxidative stress or redox-sensitive gene transcripts.


Asunto(s)
Presión Atmosférica , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Estrés Oxidativo , Oxígeno/sangre , Adolescente , Adulto , Altitud , Antioxidantes/metabolismo , Biomarcadores/sangre , Femenino , Perfilación de la Expresión Génica , Frecuencia Cardíaca , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...