Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37987019

RESUMEN

Africa faces both a disproportionate burden of infectious diseases coupled with unmet needs in bioinformatics and data science capabilities which impacts the ability of African biomedical researchers to vigorously pursue research and partner with institutions in other countries. The African Centers of Excellence in Bioinformatics and Data Intensive Science are collaborating with African academic institutions, industry partners, the Foundation for the National Institutes of Health (FNIH) and the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH) in a public-private partnership to address these challenges through enhancing computational infrastructure, fostering the development of advanced bioinformatics and data science skills among local researchers and students and providing innovative emerging technologies for infectious diseases research.

2.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659505

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Granulomatosa Crónica , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedad Granulomatosa Crónica/genética , NADPH Oxidasas , Estudios Transversales
3.
Cell Host Microbe ; 30(7): 1020-1033.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35568028

RESUMEN

Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin's effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.


Asunto(s)
Antibacterianos , Candidiasis Invasiva , Coinfección , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Bacterias/inmunología , Candida albicans/inmunología , Candidiasis Invasiva/inmunología , Candidiasis Invasiva/microbiología , Coinfección/inmunología , Coinfección/microbiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Enfermedad Iatrogénica , Inmunoterapia , Interleucina-17/inmunología , Interleucina-17/uso terapéutico , Ratones , Células Th17/metabolismo , Vancomicina/farmacología
4.
Hepatology ; 73(3): 1088-1104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32557834

RESUMEN

BACKGROUND AND AIMS: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), caused by autoimmune regulator (AIRE) mutations, manifests with chronic mucocutaneous candidiasis (CMC) and multisystem autoimmunity, most often hypoparathyroidism (HP) and adrenal insufficiency (AI). European cohorts previously reported a ~10% prevalence of APECED-associated hepatitis (APAH) with presentations ranging from asymptomatic laboratory derangements to fatal fulminant hepatic failure. Herein, we characterized APAH in a large APECED cohort from the Americas. APPROACH AND RESULTS: Forty-five consecutive patients with APECED were evaluated (2013-2015) at the National Institutes of Health (NIH; NCT01386437). Hepatology consultation assessed hepatic and autoimmune biomarkers and liver ultrasound in all patients. Liver biopsies evaluated autoimmune features and fibrosis. The 16S ribosomal RNA (rRNA) sequencing was performed in 35 patients' stools (12 with and 23 without APAH). Among 43 evaluable patients, 18 (42%) had APAH; in 33.3% of those with APAH, APAH occurred before developing classic APECED diagnostic criteria. At APAH diagnosis, the median age was 7.8 years, and patients manifested with aminotransferase elevation and/or hyperbilirubinemia. All patients with APAH were in clinical remission during their NIH evaluation while receiving immunomodulatory treatment. We found no difference in age, sex, or prevalence of CMC, AI, or HP between patients with or without APAH. Autoantibody positivity against aromatic L-amino acid decarboxylase, cytochrome P450 family 1 subfamily A member 2, histidine decarboxylase (HDC), bactericidal/permeability-increasing fold-containing B1, tryptophan hydroxlase, and 21-hydroxylase (21-OH), and the homozygous c.967_979del13 AIRE mutation were associated with APAH development. Classical serological biomarkers of autoimmune hepatitis (AIH) were only sporadically positive. AIH-like lymphoplasmacytic inflammation with mild fibrosis was the predominant histological feature. Stool microbiome analysis found Slackia and Acidaminococcus in greater abundance in patients with APAH. CONCLUSIONS: APAH is more common than previously described, may present early before classic APECED manifestations, and most often manifests with milder, treatment-responsive disease. Several APECED-associated autoantibodies, but not standard AIH-associated biomarkers, correlate with APAH.


Asunto(s)
Hepatitis Autoinmune/etiología , Poliendocrinopatías Autoinmunes/complicaciones , Adolescente , Adulto , Américas , Autoanticuerpos/inmunología , Biomarcadores/sangre , Biopsia , Femenino , Eliminación de Gen , Hepatitis Autoinmune/patología , Hepatitis Autoinmune/terapia , Humanos , Inmunoterapia , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Poliendocrinopatías Autoinmunes/genética , Poliendocrinopatías Autoinmunes/patología , Poliendocrinopatías Autoinmunes/terapia , Adulto Joven
5.
Open Forum Infect Dis ; 7(12): ofz367, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33324725

RESUMEN

Background: Intestinal microbial dysbiosis is evident in chronic HIV-infected individuals and may underlie inflammation that persists even during antiretroviral therapy (ART). It remains unclear, however, how early after HIV infection gut dysbiosis emerges and how it is affected by early ART. Methods: Fecal microbiota were studied by 16s rDNA sequencing in 52 Thai men who have sex with men (MSM), at diagnosis of acute HIV infection (AHI), Fiebig Stages 1-5 (F1-5), and after 6 months of ART initiation, and in 7 Thai MSM HIV-uninfected controls. Dysbiotic bacterial taxa were associated with relevant inflammatory markers. Results: Fecal microbiota profiling of AHI pre-ART vs HIV-uninfected controls showed a mild dysbiosis. Transition from F1-3 of acute infection was characterized by enrichment in pro-inflammatory bacteria. Lower proportions of Bacteroidetes and higher frequencies of Proteobacteria and Fusobacteria members were observed post-ART compared with pre-ART. Fusobacteria members were positively correlated with levels of soluble CD14 in AHI post-ART. Conclusions: Evidence of gut dysbiosis was observed during early acute HIV infection and was partially restored upon early ART initiation. The association of dysbiotic bacterial taxa with inflammatory markers suggests that a potential relationship between altered gut microbiota and systemic inflammation may also be established during AHI.

7.
BMC Bioinformatics ; 21(1): 378, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883210

RESUMEN

BACKGROUND: The improvements in genomics methods coupled with readily accessible high-throughput sequencing have contributed to our understanding of microbial species, metagenomes, infectious diseases and more. To maximize the impact of these genomics studies, it is important that data from biological samples will become publicly available with standardized metadata. The availability of data at public archives provides the hope that greater insights could be obtained through integration with multi-omics data, reproducibility of published studies, or meta-analyses of large diverse datasets. These datasets should include a description of the host, organism, environmental source of the specimen, spatial-temporal information and other relevant metadata, but unfortunately these attributes are often missing and when present, they show inconsistencies in the use of metadata standards and ontologies. RESULTS: METAGENOTE ( https://metagenote.niaid.nih.gov ) is a web portal that greatly facilitates the annotation of samples from genomic studies and streamlines the submission process of sequencing files and metadata to the Sequence Read Archive (SRA) (Leinonen R, et al, Nucleic Acids Res, 39:D19-21, 2011) for public access. This platform offers a wide selection of packages for different types of biological and experimental studies with a special emphasis on the standardization of metadata reporting. These packages follow the guidelines from the MIxS standards developed by the Genomics Standard Consortium (GSC) and adopted by the three partners of the International Nucleotides Sequencing Database Collaboration (INSDC) (Cochrane G, et al, Nucleic Acids Res, 44:D48-50, 2016) - National Center for Biotechnology Information (NCBI), European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). METAGENOTE then compiles, validates and manages the submission through an easy-to-use web interface minimizing submission errors and eliminating the need for submitting sequencing files via a separate file transfer mechanism. CONCLUSIONS: METAGENOTE is a public resource that focuses on simplifying the annotation and submission process of data with its corresponding metadata. Users of METAGENOTE will benefit from the easy to use annotation interface but most importantly will be encouraged to publish metadata following standards and ontologies that make the public data available for reuse.


Asunto(s)
Genómica/métodos , Interfaz Usuario-Computador , Animales , Bases de Datos Genéticas , Humanos
8.
J Infect Dis ; 221(Suppl 4): S383-S388, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31784761

RESUMEN

Viruses in the genus Henipavirus encompass 2 highly pathogenic emerging zoonotic pathogens, Hendra virus (HeV) and Nipah virus (NiV). Despite the impact on human health, there is currently limited full-genome sequence information available for henipaviruses. This lack of full-length genomes hampers our ability to understand the molecular drivers of henipavirus emergence. Furthermore, rapidly deployable viral genome sequencing can be an integral part of outbreak response and epidemiological investigations to study transmission chains. In this study, we describe the development of a reverse-transcription, long-range polymerase chain reaction (LRPCR) assay for efficient genome amplification of NiV, HeV, and a related non-pathogenic henipavirus, Cedar virus (CedPV). We then demonstrated the utility of our method by amplifying partial viral genomes from 6 HeV-infected tissue samples from Syrian hamsters and 4 tissue samples from a NiV-infected African green monkey with viral loads as low as 52 genome copies/mg. We subsequently sequenced the amplified genomes on the portable Oxford Nanopore MinION platform and analyzed the data using a newly developed field-deployable bioinformatic pipeline. Our LRPCR assay allows amplification and sequencing of 2 or 4 amplicons in semi-nested reactions. Coupled with an easy-to-use bioinformatics pipeline, this method is particularly useful in the field during outbreaks in resource-poor environments.


Asunto(s)
Henipavirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Genoma Viral , ARN Viral
9.
Proc Natl Acad Sci U S A ; 116(45): 22764-22773, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636194

RESUMEN

Neospora caninum, a cyst-forming apicomplexan parasite, is a leading cause of neuromuscular diseases in dogs as well as fetal abortion in cattle worldwide. The importance of the domestic and sylvatic life cycles of Neospora, and the role of vertical transmission in the expansion and transmission of infection in cattle, is not sufficiently understood. To elucidate the population genomics of Neospora, we genotyped 50 isolates collected worldwide from a wide range of hosts using 19 linked and unlinked genetic markers. Phylogenetic analysis and genetic distance indices resolved a single genotype of N. caninum Whole-genome sequencing of 7 isolates from 2 different continents identified high linkage disequilibrium, significant structural variation, but only limited polymorphism genome-wide, with only 5,766 biallelic single nucleotide polymorphisms (SNPs) total. Greater than half of these SNPs (∼3,000) clustered into 6 distinct haploblocks and each block possessed limited allelic diversity (with only 4 to 6 haplotypes resolved at each cluster). Importantly, the alleles at each haploblock had independently segregated across the strains sequenced, supporting a unisexual expansion model that is mosaic at 6 genomic blocks. Integrating seroprevalence data from African cattle, our data support a global selective sweep of a highly inbred livestock pathogen that originated within European dairy stock and expanded transcontinentally via unisexual mating and vertical transmission very recently, likely the result of human activities, including recurrent migration, domestication, and breed development of bovid and canid hosts within similar proximities.


Asunto(s)
Genoma , Interacciones Huésped-Parásitos , Neospora/genética , Animales , Bovinos , Genotipo , Recombinación Genética
10.
mBio ; 10(2)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015324

RESUMEN

Murine studies suggest that the presence of some species of intestinal helminths is associated with changes in host microbiota composition and diversity. However, studies in humans have produced varied conclusions, and the impact appears to vary widely depending on the helminth species present. To demonstrate how molecular approaches to the human gut microbiome can provide insights into the complex interplay among disparate organisms, DNA was extracted from cryopreserved stools collected from residents of 5 rural Kenyan villages prior to and 3 weeks and 3 months following albendazole (ALB) therapy. Samples were analyzed by quantitative PCR (qPCR) for the presence of 8 species of intestinal parasites and by MiSeq 16S rRNA gene sequencing. Based on pretreatment results, the presence of neither Ascaris lumbricoides nor Necator americanus infection significantly altered the overall diversity of the microbiota in comparison with age-matched controls. Following ALB therapy and clearance of soil-transmitted helminths (STH), there were significant increases in the proportion of the microbiota made up by Clostridiales (P = 0.0002; average fold change, 0.57) and reductions in the proportion made up by Enterobacteriales (P = 0.0004; average fold change, -0.58). There was a significant posttreatment decrease in Chao1 richness, even among individuals who were uninfected pretreatment, suggesting that antimicrobial effects must be considered in any posttreatment setting. Nevertheless, the helminth-associated changes in Clostridiales and Enterobacteriales suggest that clearance of STH, and of N. americanus in particular, alters the gut microbiota.IMPORTANCE The gut microbiome is an important factor in human health. It is affected by what we eat, what medicines we take, and what infections we acquire. In turn, it affects the way we absorb nutrients and whether we have excessive intestinal inflammation. Intestinal worms may have an important impact on the composition of the gut microbiome. Without a complete understanding of the impact of mass deworming programs on the microbiome, it is impossible to accurately calculate the cost-effectiveness of such public health interventions and to guard against any possible deleterious side effects. Our research examines this question in a "real-world" setting, using a longitudinal cohort, in which individuals with and without worm infections are treated with deworming medication and followed up at both three weeks and three months posttreatment. We quantify the impact of roundworms and hookworms on gut microbial composition, suggesting that the impact is small, but that treatment of hookworm infection results in significant changes. This work points to the need for follow-up studies to further examine the impact of hookworm on the gut microbiota and determine the health consequences of the observed changes.


Asunto(s)
Antihelmínticos/administración & dosificación , Ascariasis/tratamiento farmacológico , Bacterias/clasificación , Microbioma Gastrointestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Necatoriasis/tratamiento farmacológico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/genética , Niño , Preescolar , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Heces/microbiología , Humanos , Kenia , Metagenómica , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Población Rural , Análisis de Secuencia de ADN , Adulto Joven
11.
J Infect Dis ; 219(12): 1963-1968, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30721997

RESUMEN

Lactoferrin modulates mucosal immunity and targets mechanisms contributing to inflammation during human immunodeficiency virus disease. A randomized placebo-controlled crossover clinical trial of recombinant human (rh) lactoferrin was conducted among 54 human immunodeficiency virus-infected participants with viral suppression. Outcomes were tolerability, inflammatory, and immunologic measures, and the intestinal microbiome. The median age was 51 years, and the median CD4+ cell count was 651/µL. Adherence and adverse events did not differ between rh-lactoferrin and placebo. There was no significant effect on plasma interleukin-6 or D-dimer levels, nor on monocyte/T-cell activation, mucosal integrity, or intestinal microbiota diversity. Oral administration of rh-lactoferrin was safe but did not reduce inflammation and immune activation. Clinical Trials Registration: NCT01830595.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Inmunidad Mucosa/efectos de los fármacos , Lactoferrina/uso terapéutico , Activación de Linfocitos/efectos de los fármacos , Proteínas Recombinantes de Fusión/uso terapéutico , Terapia Antirretroviral Altamente Activa/métodos , Linfocitos T CD4-Positivos/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Femenino , VIH/efectos de los fármacos , VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunidad Mucosa/inmunología , Inflamación/tratamiento farmacológico , Inflamación/virología , Interleucina-6/metabolismo , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Carga Viral/efectos de los fármacos
12.
Int J Antimicrob Agents ; 53(4): 435-441, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30578963

RESUMEN

There is increasing recognition that the intestinal microbiota govern human well-being and prevent diseases. Intestinal colonization by antibiotic-resistant pathogens, however, can lead to the spread of resistance as well as serious infections. Extended-spectrum ß-lactamase-producing Enterobacteriaceae (ESBL-E) represent particularly dangerous pathogens, which are known to asymptomatically colonize the intestinal tract in the community. Here, we performed a 16S rRNA metagenomics sequence analysis to analyse differences in the microbiota composition between ESBL-E carriers and non-carriers in Thailand, where ESBL-E carriage rates are notoriously high. The most notable difference detected was that the phylum Bacteroidetes, and in particular, the species Bacteroides uniformis, were significantly more abundant in ESBL-E non-carriers than carriers. The Shannon diversity index in non-carriers (5.10 ± 0.69) was also lower than that in ESBL-E carriers (5.39 ± 0.48) without statistical significance (P=0.13). The overall beta diversity difference of the intestinal microbiota of ESBL-E carriers as compared to non-carriers was statistically significant (Adonis on weighted unifrac: R2=0.14, P=0.005). Furthermore, ESBL-E carriage was significantly lower in farmers than in those with other occupations. Our findings suggest that a dynamic interaction exists between microbiota diversity and ESBL-E carriage, which is possibly driven by dietary composition and may be exploited using probiotic approaches to control the spread of ESBL-E.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Enterobacteriaceae/clasificación , Microbioma Gastrointestinal/genética , Intestinos/microbiología , Antibacterianos/uso terapéutico , Bacteroides/aislamiento & purificación , Portador Sano/microbiología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Agricultores/estadística & datos numéricos , Voluntarios Sanos/estadística & datos numéricos , Humanos , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , Tailandia , beta-Lactamasas/metabolismo
13.
Bioinformatics ; 34(8): 1411-1413, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028892

RESUMEN

Motivation: Widespread interest in the study of the microbiome has resulted in data proliferation and the development of powerful computational tools. However, many scientific researchers lack the time, training, or infrastructure to work with large datasets or to install and use command line tools. Results: The National Institute of Allergy and Infectious Diseases (NIAID) has created Nephele, a cloud-based microbiome data analysis platform with standardized pipelines and a simple web interface for transforming raw data into biological insights. Nephele integrates common microbiome analysis tools as well as valuable reference datasets like the healthy human subjects cohort of the Human Microbiome Project (HMP). Nephele is built on the Amazon Web Services cloud, which provides centralized and automated storage and compute capacity, thereby reducing the burden on researchers and their institutions. Availability and implementation: https://nephele.niaid.nih.gov and https://github.com/niaid/Nephele. Contact: darrell.hurt@nih.gov.


Asunto(s)
Nube Computacional , Biología Computacional/métodos , Microbiota/genética , Programas Informáticos , Humanos , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN
14.
J Clin Invest ; 127(5): 1905-1917, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414292

RESUMEN

Proinflammatory cytokine overproduction and excessive cell death, coupled with impaired clearance of apoptotic cells, have been implicated as causes of failure to resolve gut inflammation in inflammatory bowel diseases. Here we have found that dendritic cells expressing the apoptotic cell-recognizing receptor CD300f play a crucial role in regulating gut inflammatory responses in a murine model of colonic inflammation. CD300f-deficient mice failed to resolve dextran sulfate sodium-induced colonic inflammation as a result of defects in dendritic cell function that were associated with abnormal accumulation of apoptotic cells in the gut. CD300f-deficient dendritic cells displayed hyperactive phagocytosis of apoptotic cells, which stimulated excessive TNF-α secretion predominantly from dendritic cells. This, in turn, induced secondary IFN-γ overproduction by colonic T cells, leading to prolonged gut inflammation. Our data highlight a previously unappreciated role for dendritic cells in controlling gut homeostasis and show that CD300f-dependent regulation of apoptotic cell uptake is essential for suppressing overactive dendritic cell-mediated inflammatory responses, thereby controlling the development of chronic gut inflammation.


Asunto(s)
Apoptosis/inmunología , Colitis/inmunología , Células Dendríticas/inmunología , Receptores Inmunológicos/inmunología , Animales , Apoptosis/genética , Enfermedad Crónica , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Células Dendríticas/patología , Sulfato de Dextran/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Receptores Inmunológicos/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
J Clin Microbiol ; 55(2): 457-469, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27903602

RESUMEN

The emergence and spread of drug-resistant Mycobacterium tuberculosis (DR-TB) are critical global health issues. Eastern Europe has some of the highest incidences of DR-TB, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. To better understand the genetic composition and evolution of MDR- and XDR-TB in the region, we sequenced and analyzed the genomes of 138 M. tuberculosis isolates from 97 patients sampled between 2010 and 2013 in Minsk, Belarus. MDR and XDR-TB isolates were significantly more likely to belong to the Beijing lineage than to the Euro-American lineage, and known resistance-conferring loci accounted for the majority of phenotypic resistance to first- and second-line drugs in MDR and XDR-TB. Using a phylogenomic approach, we estimated that the majority of MDR-TB was due to the recent transmission of already-resistant M. tuberculosis strains rather than repeated de novo evolution of resistance within patients, while XDR-TB was acquired through both routes. Longitudinal sampling of M. tuberculosis from 34 patients with treatment failure showed that most strains persisted genetically unchanged during treatment or acquired resistance to fluoroquinolones. HIV+ patients were significantly more likely to have multiple infections over time than HIV- patients, highlighting a specific need for careful infection control in these patients. These data provide a better understanding of the genomic composition, transmission, and evolution of MDR- and XDR-TB in Belarus and will enable improved diagnostics, treatment protocols, and prognostic decision-making.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacología , Transmisión de Enfermedad Infecciosa , Genotipo , Humanos , Estudios Longitudinales , Epidemiología Molecular , República de Belarús/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/transmisión
16.
Microbiome ; 4: 13, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044504

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) complex subunits (gp91(phox) (a.k.a. Nox2), p47(phox), p67(phox), p22(phox), p40(phox)) leading to reduced phagocyte-derived reactive oxygen species production. Almost half of patients with CGD develop inflammatory bowel disease, and the involvement of the intestinal microbiome in relation to this predisposing immunodeficiency has not been explored. RESULTS: Although CGD mice do not spontaneously develop colitis, we demonstrate that p47(phox-/-) mice have increased susceptibility to dextran sodium sulfate colitis in association with a distinct colonic transcript and microbiome signature. Neither restoring NOX2 reactive oxygen species production nor normalizing the microbiome using cohoused adult p47(phox-/-) with B6Tac (wild type) mice reversed this phenotype. However, breeding p47(phox+/-) mice and standardizing the microflora between littermate p47(phox-/-) and B6Tac mice from birth significantly reduced dextran sodium sulfate colitis susceptibility in p47(phox-/-) mice. We found similarly decreased colitis susceptibility in littermate p47(phox-/-) and B6Tac mice treated with Citrobacter rodentium. CONCLUSIONS: Our findings suggest that the microbiome signature established at birth may play a bigger role than phagocyte-derived reactive oxygen species in mediating colitis susceptibility in CGD mice. These data further support bacteria-related disease in CGD colitis.


Asunto(s)
Colitis/genética , Enfermedad Granulomatosa Crónica/genética , Enfermedades Inflamatorias del Intestino/genética , Microbiota/genética , NADPH Oxidasas/genética , Adulto , Animales , Citrobacter rodentium/patogenicidad , Citrobacter rodentium/fisiología , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Cruzamientos Genéticos , Sulfato de Dextran , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Enfermedad Granulomatosa Crónica/microbiología , Enfermedad Granulomatosa Crónica/patología , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Noqueados , NADP/metabolismo , NADPH Oxidasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo
17.
Malar J ; 15: 30, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791272

RESUMEN

BACKGROUND: The rodent malaria parasite Plasmodium yoelii is an important animal model for studying host-parasite interaction and molecular basis of malaria pathogenesis. Although a draft genome of P. yoelii yoelii YM is available, and RNA sequencing (RNA-seq) data for several rodent malaria species (RMP) were reported recently, variations in coding regions and structure of mRNA transcript are likely present between different parasite strains or subspecies. Sequencing of cDNA libraries from additional parasite strains/subspecies will help improve the gene models and genome annotation. METHODS: Here two directional cDNA libraries from mixed blood stages of a subspecies of P. yoelii (P. y. nigeriensis NSM) with or without mefloquine (MQ) treatment were sequenced, and the sequence reads were compared to the genome and cDNA sequences of P. y. yoelii YM in public databases to investigate single nucleotide polymorphisms (SNPs) in coding regions, variations in intron-exon structure and differential splicing between P. yoelii subspecies, and variations in gene expression under MQ pressure. RESULTS: Approximately 56 million of 100 bp paired-end reads were obtained, providing an average of ~225-fold coverage for the coding regions. Comparison of the sequence reads to the YM genome revealed introns in 5' and 3' untranslated regions (UTRs), altered intron/exon boundaries, alternative splicing, overlapping sense-antisense reads, and potentially new transcripts. Interestingly, comparison of the NSM RNA-seq reads obtained here with those of YM discovered differentially spliced introns; e.g., spliced introns in one subspecies but not the other. Alignment of the NSM cDNA sequences to the YM genome sequence also identified ~84,000 SNPs between the two parasites. CONCLUSION: The discoveries of UTR introns and differentially spliced introns between P. yoelii subspecies raise interesting questions on the potential role of these introns in regulating gene expression and evolution of malaria parasites.


Asunto(s)
Empalme Alternativo/genética , Intrones/genética , Plasmodium yoelii/genética , ARN sin Sentido/genética , Genoma de Protozoos/genética , Malaria/parasitología , Polimorfismo de Nucleótido Simple/genética
18.
Cell ; 163(2): 354-66, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26451485

RESUMEN

Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Sistema Inmune/microbiología , Enfermedades del Sistema Inmune/patología , Enfermedades Linfáticas/patología , Infecciones por Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/fisiología , Movimiento Celular , Enfermedad Crónica , Células Dendríticas/patología , Femenino , Humanos , Enfermedades Linfáticas/microbiología , Tejido Linfoide/inmunología , Tejido Linfoide/patología , Masculino , Mesenterio/inmunología , Mesenterio/patología , Organismos Libres de Patógenos Específicos , Infecciones por Yersinia pseudotuberculosis/patología
19.
Nature ; 520(7545): 104-8, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25539086

RESUMEN

The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Piel/inmunología , Piel/microbiología , Simbiosis/inmunología , Animales , Antígenos Bacterianos/inmunología , Linfocitos T CD8-positivos/citología , Células Dendríticas/citología , Humanos , Inmunidad Innata/inmunología , Interleucina-17/inmunología , Células de Langerhans/citología , Células de Langerhans/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Primates , Piel/citología , Staphylococcus epidermidis/inmunología
20.
PeerJ ; 2: e644, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392756

RESUMEN

The advent of Next Generation Sequencing (NGS) technologies has opened new possibilities for researchers. However, the more biology becomes a data-intensive field, the more biologists have to learn how to process and analyze NGS data with complex computational tools. Even with the availability of common pipeline specifications, it is often a time-consuming and cumbersome task for a bench scientist to install and configure the pipeline tools. We believe that a unified, desktop and biologist-friendly front end to NGS data analysis tools will substantially improve productivity in this field. Here we present NGS pipelines "Variant Calling with SAMtools", "Tuxedo Pipeline for RNA-seq Data Analysis" and "Cistrome Pipeline for ChIP-seq Data Analysis" integrated into the Unipro UGENE desktop toolkit. We describe the available UGENE infrastructure that helps researchers run these pipelines on different datasets, store and investigate the results and re-run the pipelines with the same parameters. These pipeline tools are included in the UGENE NGS package. Individual blocks of these pipelines are also available for expert users to create their own advanced workflows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA