Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38334654

RESUMEN

Noradrenaline and adrenaline, and their cognate receptors, are currently accepted to participate in cancer progression. They may also participate in cancer initiation, although their role in this phase is much less explored. The aim of this work was to study the influence of adrenergic stimulation in several processes related to breast cancer carcinogenesis, using several adrenergic agonists in the MCF-10A non-tumorigenic breast cells. Activation of the ß-adrenoceptors promoted an epithelial phenotype in MCF-10A cells, revealed by an increased expression of the epithelial marker E-cadherin and a decrease in the mesenchymal markers, N-cadherin and vimentin. MCF-10A cell motility and migration were also impaired after the ß-adrenoceptors activation. Concomitant with this effect, ß-adrenoceptors decrease cell protrusions (lamellipodia and filopodia) while increasing cell adhesion. Activation of the ß-adrenoceptors also decreases MCF-10A cell proliferation. When the MCF-10A cells were cultured under low attachment conditions, activation the of ß- (likely ß2) or of α2-adrenoceptors had protective effects against cell death, suggesting a pro-survival role of these adrenoceptors. Overall, our results showed that, in breast cells, adrenoceptor activation (mainly through ß-adrenoceptors) may be a risk factor in breast cancer by inducing some cancer hallmarks, providing a mechanistic explanation for the increase in breast cancer incidences that may be associated with conditions that cause massive adrenergic stimulation, such as stress.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Femenino , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Adrenérgicos/metabolismo , Carcinogénesis/metabolismo
2.
Cells ; 12(13)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37443726

RESUMEN

In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.


Asunto(s)
N-Metilaspartato , Norepinefrina , Ratas , Animales , Norepinefrina/farmacología , Norepinefrina/metabolismo , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Ratas Wistar , Adenosina/metabolismo , Corteza Cerebral/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo
3.
Neurogastroenterol Motil ; 35(9): e14598, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37052403

RESUMEN

BACKGROUND: Angiotensin-converting enzyme (ACE) and ACE2 are two major enzymes of the renin-angiotensin-aldosterone system (RAAS), which control the formation/degradation of angiotensin (Ang) II and Ang1-7, regulating their opposite effects. We aimed at evaluating the catalytic activity of ACE and ACE2 in the intestinal content and corresponding intestinal tissue along the gut of Wistar Han rats. METHODS: Portions of the ileum, cecum, proximal colon, and distal colon, and the corresponding intestinal content were collected from Wistar Han rats. Enzyme activity was evaluated by fluorometric assays using different substrates: Hippuryl-His-Leu for ACE-C-domain, Z-Phe-His-Leu for ACE-N-domain, and Mca-APK(Dnp) for ACE2. ACE and ACE2 concentration was assessed by ELISA. Ratios concerning concentrations and activities were calculated to evaluate the balance of the RAAS. Statistical analysis was performed using Friedman test followed by Dunn's multiple comparisons test or Wilcoxon matched-pairs test whenever needed. KEY RESULTS: ACE and ACE2 are catalytically active in the intestinal content along the rat gut. The ACE N-domain shows higher activity than the C-domain both in the intestinal content and in the intestinal tissue. ACE and ACE2 are globally more active in the intestinal content than in the corresponding intestinal tissue. There was a distal-to-proximal prevalence of ACE2 over ACE in the intestinal tissue. CONCLUSIONS & INFERENCES: This work is the first to report the presence of catalytically active ACE and ACE2 in the rat intestinal content, supporting future research on the regulatory role of the intestinal RAAS on gut function and a putative link to the microbiome.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hormonas Peptídicas , Animales , Ratas , Angiotensina II , Heces , Contenido Digestivo , Ratas Wistar , Sistema Renina-Angiotensina
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1291-1307, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36723607

RESUMEN

1,2-Dimethylhydrazine (DMH) is a plant toxicant that enters the food web through the diet. It is biotransformed into azoxymethane, a colon carcinogen, during the first hepatic passage. In mice, this study assessed the role of glutamate dehydrogenase (GDH), a key glutaminolysis enzyme in DMH-induced colorectal cancer (CRC). Colon samples were taken from mice given 6 or 15 weekly doses of 20 mg/kg DMH and serially sacrificed. Repeated DMH doses induced early aberrant crypt foci that evolved into irreversible adenocarcinomas over 24 weeks, along with an increase in GDH and lactate dehydrogenase activities (+ 122%, + 238%, P < 0.001), indicating a switch to aerobic glycolysis and glutaminolysis. Transcriptional downregulation of the endogenous GDH inhibitor, sirtuin4, and two redox regulators, mitochondrial sestrin2 and nuclear factor (erythroid derivative 2)-like 2 (- 26% and - 22%, P < 0, 05; and - 30%, P < 0.01), exacerbated mitochondrial stress by boosting mitochondrial superoxide dismutase activity (+ 240% (P < 0.001) while depressing catalase activity and GSH levels (- 57% and - 60%, P < 0.001). In vitro, allosteric GDH inhibition by 50 µM epigallocatechin gallate decreased human carcinoma (HCT-116) cells' viability, clonogenicity, and migration (- 43% and - 57%, P < 0.001, 41%, P < 0.05), while stimulating ROS release (+ 57%, P < 0.001). Dimethylfumarate (DMF), a linear electrophile and mitochondrial fumarate analog, rebalanced ROS levels (- 34%, P < 0.05) and improved GDH activity, cell viability, and tumorogenic capacity (+ 20%, 20%, P < 0.001; and 33%, P < 0.05). Thus, the pathological remodeling of colon mucosa is supported by metabolic reprogramming bypassing uncoupled mitochondria. DMF highlights the critical role of electrophile response elements in modulating redox mithormesis and redox homeostasis during CRC.


Asunto(s)
Neoplasias del Colon , Ratas , Humanos , Ratones , Animales , 1,2-Dimetilhidrazina/efectos adversos , 1,2-Dimetilhidrazina/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Colon/metabolismo , Membrana Mucosa
5.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614209

RESUMEN

Physiologically, ß-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. ß-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of ß-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective ß-adrenoceptor agonist) and salbutamol (a selective ß2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective ß1- and ß3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both ß1- and ß3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a ß-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving ß1- and ß3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.


Asunto(s)
Gotas Lipídicas , Neoplasias , Humanos , Isoproterenol/farmacología , Células MCF-7 , Proteínas Quinasas Dependientes de AMP Cíclico , Agonistas Adrenérgicos beta/farmacología , Receptores Adrenérgicos beta , Albuterol/farmacología , Epinefrina , Factores de Intercambio de Guanina Nucleótido , Antagonistas Adrenérgicos beta/farmacología
6.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256889

RESUMEN

Depigmenting products are increasingly used to counteract skin hyperpigmentation and related psychosocial issues. This study aimed to compare different depigmenting agents-4-butylresorcinol; bakuchiol; tranexamic acid; ascorbyl glucoside; α-arbutin; and ascorbic acid-for photoreactivity; tyrosinase inhibition; and safety. Photoreactivity was assessed using the Reactive Oxygen Species assay. In vitro tyrosinase inhibition was compared, and cell viability was assessed in B-16V melanocytes to evaluate safety. Results showed 4-butylresorcinol, ascorbyl glucoside, and α-arbutin are non-photoreactive, while for ascorbic acid and bakuchiol it was not possible to reach conclusive results due to the lack of specificity of the ROS assay. 4-Butylresorcinol, acting as a competitive inhibitor, displayed potent tyrosinase inhibition, followed by ascorbic acid and bakuchiol. Both 4-butylresorcinol and bakuchiol reduced cell viability in a concentration-dependent manner. The insights obtained in this work support the development of depigmenting products by providing useful scientific guidance on the photostability, tyrosinase inhibitory efficacy, and skin safety of depigmenting agents.

7.
J Cell Physiol ; 237(4): 2107-2127, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35243626

RESUMEN

Breast cancer is the most common and deadliest type of cancer in women. Stress exposure has been associated with carcinogenesis and the stress released neurotransmitters, noradrenaline and adrenaline, and their cognate receptors, can participate in the carcinogenesis process, either by regulating tumor microenvironment or by promoting systemic changes. This work intends to provide an overview of the research done in this area and try to unravel the role of adrenergic ligands in the context of breast carcinogenesis. In the initiation phase, adrenergic signaling may favor neoplastic transformation of breast epithelial cells whereas, during cancer progression, may favor the metastatic potential of breast cancer cells. Additionally, adrenergic signaling can alter the function and activity of other cells present in the tumor microenvironment towards a protumor phenotype, namely macrophages, fibroblasts, and by altering adipocyte's function. Adrenergic signaling also promotes angiogenesis and lymphangiogenesis and, systemically, may induce the formation of preneoplastic niches, cancer-associated cachexia and alterations in the immune system which contribute for the loss of quality of life of breast cancer patients and their capacity to fight cancer. Most studies points to a major contribution of ß2 -adrenoceptor activated pathways on these effects. The current knowledge of the mechanistic pathways activated by ß2 -adrenoceptors in physiology and pathophysiology, the availability of selective drugs approved for clinical use and a deeper knowledge of the basic cellular and molecular pathways by which adrenergic stimulation may influence cancer initiation and progression, opens the possibility to use new therapeutic alternatives to improve efficacy of breast cancer treatments.


Asunto(s)
Neoplasias de la Mama , Epinefrina/metabolismo , Norepinefrina/metabolismo , Estrés Fisiológico , Neoplasias de la Mama/patología , Carcinogénesis , Femenino , Humanos , Calidad de Vida , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Microambiente Tumoral
8.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120955

RESUMEN

Adrenaline, which participates in the neuroendocrine response that occurs during stress and perimenopause, may be tumorigenic. This exploratory study aimed at investigating whether non-tumorigenic and tumorigenic human breast epithelial cell lines are able to synthesize adrenaline. The study was carried out in non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) human breast cell lines. Expression of enzymes involved in adrenaline synthesis was characterized by RT-qPCR, immunocytochemistry and western blot. Catecholamines and analogue compounds were quantified by HPLC-ECD. Functional assessment of the impact of drugs on cells' tumorigenic potential was assessed by determination of cell viability and clonogenic ability. Both MCF-10A and MCF-7 cells produce catecholamines, but the capacity to produce adrenaline is lower in MCF-10A cells. ß-adrenoceptor activation increases the capacity of MCF-10A cells to produce adrenaline and favor both cell viability and colony formation. It is concluded that exposure of human breast epithelial cells to ß-adrenoceptor agonists increases cell proliferation and the capacity to produce adrenaline, creating an autocrine potential to spread these adrenergic effects in a feed-forward loop. It is conceivable that these effects are related to tumorigenesis, bringing a new perspective to understand the claimed anticancer effects of propranolol and the increase in breast cancer incidence caused by stress or during perimenopause.


Asunto(s)
Agonistas Adrenérgicos/farmacología , Neoplasias de la Mama/metabolismo , Mama/citología , Catecolaminas/biosíntesis , Receptores Adrenérgicos/metabolismo , Mama/efectos de los fármacos , Mama/metabolismo , Neoplasias de la Mama/genética , Catecolaminas/análisis , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Medios de Cultivo/análisis , Epinefrina/análisis , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Norepinefrina/análisis , Propranolol/farmacología
9.
Eur J Pharmacol ; 885: 173504, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32858046

RESUMEN

Leishmania infected macrophages have conditions to produce adenosine. Despite its known immunosuppressive effects, no studies have yet established whether adenosine alter Leishmania parasitic burden upon macrophage infection. This work aimed at investigating whether endogenous adenosine exerts an autocrine modulation of macrophage response towards Leishmania infection, identifying its origin and potential pharmacological targets for visceral leishmaniasis (VL), using THP-1 differentiated macrophages. Adenosine deaminase treatment of infected THP-1 cells reduced the parasitic burden (29.1 ± 2.2%, P < 0.05). Adenosine A2A and A2B receptor subtypes expression was confirmed by RT-qPCR and by immunocytochemistry and their blockade with selective adenosine A2A and A2B antagonists reduced the parasitic burden [14.5 ± 3.1% (P < 0.05) and 12.3 ± 3.1% (P < 0.05), respectively; and 24.9 ± 2.8% (P < 0.05), by the combination of the two antagonists)], suggesting that adenosine A2 receptors are tonically activated in infected THP-1 differentiated macrophages. The tonic activation of adenosine A2 receptors was dependent on the release of intracellular adenosine through equilibrative nucleoside transporters (ENT1/ENT2): NBTI or dipyridamole reduced (~25%) whereas, when ENTs were blocked, adenosine A2 receptor antagonists failed to reduce and A2 agonists increase parasitic burden. Effects of adenosine A2 receptors antagonists and ENT1/2 inhibitor were prevented by L-NAME, indicating that nitric oxide production inhibition prevents adenosine from increasing parasitic burden. Results suggest that intracellular adenosine, released through ENTs, elicits an autocrine increase in parasitic burden in THP-1 macrophages, through adenosine A2 receptors activation. These observations open the possibility to use well-established ENT inhibitors or adenosine A2 receptor antagonists as new therapeutic approaches in VL.


Asunto(s)
Adenosina/metabolismo , Comunicación Autocrina/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Receptor de Adenosina A2A/efectos de los fármacos , Receptor de Adenosina A2B/efectos de los fármacos , Células THP-1/efectos de los fármacos , Antagonistas del Receptor de Adenosina A2/farmacología , Carga Corporal (Radioterapia) , Tranportador Equilibrativo 1 de Nucleósido/efectos de los fármacos , Transportador Equilibrativo 2 de Nucleósido/efectos de los fármacos , Humanos , Leishmaniasis Visceral/parasitología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/antagonistas & inhibidores
10.
Front Pharmacol ; 9: 418, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773988

RESUMEN

Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPßS, a stable ADP analog. In astrocyte cultures, ADPßS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia). The possibility that the loss of the ADPßS-mediated effect could have been caused by a microglia-induced degradation of ADPßS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPßS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPßS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPßS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 µM) and of the selective P2Y12 antagonist AR-C66096 (0.1 µM), suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in microglia with P2Y13 receptors to prevent proliferation. IL-1ß also attenuated the proliferative effect of ADPßS in astrocyte cultures. However, in co-cultures, the anti-IL-1ß antibody was unable to recover the ADPßS-proliferative effect, an effect that was achieved by the anti-IL-1α and anti-TNF-α antibodies. It is concluded that microglia control the P2Y1,12 receptor-mediated astroglial proliferation through a P2Y12,13 receptor-mediated mechanism alternative to the IL-1ß suppressive pathway that may involve the contribution of the cytokines IL-1α and TNF-α.

11.
Pharmacol Res ; 103: 328-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26657418

RESUMEN

Histone deacetylases (HDACs) are key epigenetic enzymes and emerging drug targets in cancer and neurodegeneration. Pan-HDAC inhibitors provided neuroprotection in Parkinson's Disease (PD) models, however, the HDAC isoforms with highest neuroprotective potential remain unknown. Zebrafish larvae (powerful pharmacological testing tools bridging cellular and in vivo studies) have thus far been used in PD modelling with limited phenotypic characterization. Here we characterize the behavioural and metabolic phenotypes of a zebrafish PD model induced with MPP(+), assess the feasibility of targeting zebrafish HDAC1 and HDAC6 isoforms, and test the in vivo effects of their selective inhibitors MS-275 and tubastatin A, respectively. MPP(+) induced a concentration-dependent decrease in metabolic activity and sensorimotor reflexes, and induced locomotor impairments rescuable by the dopaminergic agonist apomorphine. Zebrafish HDAC1 and HDAC6 isoforms show high sequence identity with mammalian homologues at the deacetylase active sites, and pharmacological inhibition increased acetylation of their respective histone and tubulin targets. MS-275 and tubastatin rescued the MPP(+)-induced decrease in diencephalic tyrosine hydroxylase immunofluorescence and in whole-larvae metabolic activity, without modifying mitochondrial complex activity or biogenesis. MS-275 or tubastatin alone modulated spontaneous locomotion. When combined with MPP(+), however, neither MS-275 nor tubastatin rescued locomotor impairments, although tubastatin did ameliorate the head-reflex impairment. This study demonstrates the feasibility of pharmacologically targeting the zebrafish HDAC1 and HDAC6 isoforms, and indicates that their inhibition can rescue cellular metabolism in a PD model. Absence of improvement in locomotion, however, suggests that monotherapy with either HDAC1 or HDAC6 inhibitors is unlikely to provide strong benefits in PD. This study highlights parameters dependent on the integrity of zebrafish neuronal circuits as a valuable complement to cell-based studies. Also, the demonstrated feasibility of pharmacologically targeting HDAC1 and HDAC6 in this organism paves the way for future studies investigating HDAC inhibitors in other diseases modelled in zebrafish.


Asunto(s)
Benzamidas/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Enfermedad de Parkinson Secundaria , Piridinas/farmacología , Proteínas de Pez Cebra/antagonistas & inhibidores , 1-Metil-4-fenilpiridinio , Animales , Conducta Animal/efectos de los fármacos , Diencéfalo/efectos de los fármacos , Diencéfalo/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasa 1/genética , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Larva , Locomoción/efectos de los fármacos , Neurotoxinas , Oxazinas/metabolismo , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , ARN Mensajero/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Xantenos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
12.
J Neuroinflammation ; 11: 141, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25178395

RESUMEN

BACKGROUND: During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis. METHODS: Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining. RESULTS: UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 µM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 µM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 µM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 µM). UDP-mediated NO release induced apoptosis in astrocytes, but not in microglia. CONCLUSIONS: In LPS treated co-cultures of astrocytes and microglia, UTP is rapidly converted into UDP, which activates P2Y6 receptors inducing the release of NO by microglia that causes astrocyte apoptosis, thus controlling their rate of proliferation and preventing an excessive astrogliosis.


Asunto(s)
Apoptosis/fisiología , Astrocitos/fisiología , Microglía/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Ratas , Ratas Wistar , Timidina/farmacocinética , Factores de Tiempo , Tritio/farmacocinética , Nucleótidos de Uracilo/metabolismo , Nucleótidos de Uracilo/farmacología
13.
J Neurophysiol ; 110(11): 2580-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24027106

RESUMEN

The pathogenesis of psychiatric and neurodegenerative diseases is often associated with a deregulation of noradrenergic transmission. Considering the potential involvement of purinergic signaling in the modulation of noradrenergic transmission in the brain cortex, this study aimed to identify the P2Y receptor subtypes involved in the modulation of neuronal release and neuronal/glial uptake of norepinephrine. Electrical stimulation (100 pulses at 5 Hz) of rat cortical slices induced norepinephrine release that was inhibited by ATP and ADP (0.01-1 mM), adenosine 5'-O-(2-thiodiphosphate) (ADPßS, 0.03-0.3 mM), and UDP (0.1-1 mM). The effect of ADPßS was mediated by P2Y1 receptors and possibly by A1/P2Y1 heterodimers since it was attenuated by the A1 receptor antagonist DPCPX and by the P2Y1 receptor antagonist MRS 2500 but was resistant to the effect of adenosine deaminase (ADA). UDP inhibited norepinephrine release through activation of P2Y6 receptors, an effect that was abolished by the P2Y6 receptor antagonist MRS 2578 and by DPCPX, indicating that it depends on the formation and/or release of adenosine and activation of A1 receptors. Supporting this hypothesis, the inhibitory effect of UDP was also prevented by inhibition of ectonucleotidases, by ADA and was attenuated by the inhibitor of nucleoside transporter 6-[(4-nitrobenzyl)thio]-9-ß-d-ribofuranosylpurine (NBTI). Additionally, the inhibitory effect of UDP was attenuated when norepinephrine uptake 1 or 2 was inhibited. In astroglial cultures, ADPßS and UDP increased norepinephrine uptake mainly by activation of P2Y1 and P2Y6 receptors, respectively. The results indicate that neuronal and glial P2Y1 and P2Y6 receptors may represent new targets of intervention to regulate noradrenergic transmission in CNS diseases.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Exocitosis , Norepinefrina/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Potenciales de Acción , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Animales , Astrocitos/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Estimulación Eléctrica , Masculino , Agonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Wistar
14.
Purinergic Signal ; 7(2): 251-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21559785

RESUMEN

Nucleotides released upon brain injury signal to astrocytes and microglia playing an important role in astrogliosis, but the participation of microglia in the purinergic modulation of astrogliosis is still unclear. Highly enriched astroglial cultures and co-cultures of astrocytes and microglia were used to investigate the influence of microglia in the modulation of astroglial proliferation mediated by nucleotides. In highly enriched astroglial cultures, adenosine-5'-triphosphate (ATP), adenosine 5'-O-(3-thio)-triphosphate (ATPγS), adenosine 5'-O-(3-thio)-diphosphate (ADPßS; 0.01-1 mM), and adenosine-5'-diphosphate (ADP; 0.1-1 mM) increased proliferation up to 382%, an effect abolished in co-cultures containing 8% of microglia. The loss of ATP proliferative effect in co-cultures is supported by its fast metabolism and reduced ADP accumulation, an agonist of P2Y(1,12) receptors that mediate astroglial proliferation. No differences in ADPßS and ATPγS metabolism or P2Y(1,12) receptors expression were found in co-cultures that could explain the loss of their proliferative effect. However, conditioned medium from microglia cultures or co-cultures treated with ADPßS, when tested in highly enriched astroglial cultures, also prevented ADPßS proliferative effect. None of the uracil nucleotides tested had any effect in proliferation of highly enriched astroglial cultures, but uridine-5'-triphosphate (UTP; 0.1-1 mM) inhibited proliferation up to 66% in co-cultures, an effect that was dependent on uridine-5'-diphosphate (UDP) accumulation, coincident with a co-localization of P2Y(6) receptors in microglia and due to cell apoptosis. The results indicate that microglia control astroglial proliferation by preventing the proliferative response to adenine nucleotides and favouring an inhibitory effect of UTP/UDP. Several microglial P2Y receptors may be involved by inducing the release of messengers that restrain astrogliosis, a beneficial effect for neuronal repair mechanisms following brain injury.

15.
Eur J Pharmacol ; 652(1-3): 33-9, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21114976

RESUMEN

The role of angiotensin II receptors, bradykinin receptors and ß-adrenoceptors in the modulation of noradrenaline release and the influence of α(2)-autoinhibition in these effects was investigated in the mesenteric artery and vein. Rings of mesenteric vessels of male Wistar rats were labelled with [(3)H]-noradrenaline and the effects of modulators on tritium overflow evoked by 100 pulses at 2Hz (marked α(2)-autoinhibition) and by 20 pulses at 50Hz or 100 pulses at 2Hz plus yohimbine (1µM; reduced α(2)-autoinhibition) were evaluated. Angiotensin II and bradykinin enhanced noradrenaline release evoked by 100 pulses at 2Hz, in a concentration-dependent manner, in both vessels. These effects were attenuated under conditions of reduced α(2)-autoinhibition. The attenuation was partially reversed by activation of adenosine A(1) receptors in both vessels and by activation of P2Y receptors in the vein. Isoprenaline and the selective ß(2)-adrenoceptor agonist formoterol enhanced tritium overflow independently of α(2)-autoinhibition in the vein. In the artery, the enhancement by formoterol was only observed under reduced α(2)-autoinhibition. Pharmacological characterization of the ß-adrenoceptors indicated that in the artery the effect of isoprenaline was mediated by the ß(1)-subtype under marked α(2)-autoinhibition and by the ß(2)-subtype under reduced α(2)-autoinhibition whereas in the vein the effect was independent of α(2)-autoinhibition. The results indicate that α(2)-autoinhibition is a key determinant of the magnitude of facilitation caused by angiotensin II and bradykinin in both types of mesenteric vessels and regulates the effects mediated by ß(1)-and ß(2)-adrenoceptors which co-exist in the artery.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Arterias Mesentéricas/efectos de los fármacos , Venas Mesentéricas/efectos de los fármacos , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Angiotensina II/farmacología , Animales , Bradiquinina/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Arterias Mesentéricas/metabolismo , Venas Mesentéricas/metabolismo , Ratas , Ratas Wistar
16.
Neurochem Int ; 55(7): 505-13, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19447154

RESUMEN

In the sympathetic nervous system, ATP is a co-transmitter and modulator of transmitter release, inhibiting noradrenaline release by acting on P2Y autoreceptors, but in peripheral tissues the subtypes involved have only scarcely been identified. We investigated the identity of the noradrenaline release-inhibiting P2Y subtypes in the epididymal portion of vas deferens and tail artery of the rat. The subtypes operating as autoreceptors, the signalling mechanism and cross-talk with alpha(2)-autoreceptors, was also investigated in the epididymal portion. In both tissues, the nucleotides 2-methylthioATP, 2-methylthioADP, ADP and ATP inhibited noradrenaline release up to 68%, with the following order of potency: 2-methylthioADP=2-methylthioATP>ADP=ATP in the epididymal portion and 2-methylthioADP=2-methylthioATP=ADP>ATP in the tail artery. The selective P2Y(1) antagonist 2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate (30microM) and the P2Y(12) antagonist 2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propyl ester (30microM) increased noradrenaline release per se by 25+/-8% and 18+/-3%, respectively, in the epididymal portion but not in tail artery. Both antagonists attenuated the effect of nucleotides in the epididymal portion whereas in tail artery only the P2Y(1) antagonist was effective. The agonist of P2Y(1) and P2Y(12) receptors, 2-methylthioADP, caused an inhibition of noradrenaline release that was not prevented by inhibition of phospholipase C or protein kinase C but was abolished by pertussis toxin. 2-methylthioADP and the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine were less potent at inhibiting noradrenaline release under marked influence of alpha(2)-autoinhibition. In both tissues, nucleotides modulate noradrenaline release by activation of inhibitory P2Y(1) receptors but in the epididymal portion P2Y(12) receptors also participate. P2Y(1) and P2Y(12) receptors are coupled to G(i/o)-proteins and operate as autoreceptors in the vas deferens where they interact with alpha(2)-adrenoceptors on the modulation of noradrenaline release.


Asunto(s)
Neurotransmisores/metabolismo , Receptores Purinérgicos P2/fisiología , Sistema Nervioso Simpático/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Antidepresivos Tricíclicos/farmacología , Arterias/efectos de los fármacos , Arterias/metabolismo , Western Blotting , Desipramina/farmacología , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Técnicas In Vitro , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Wistar , Receptor Cross-Talk/efectos de los fármacos , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A1/metabolismo , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Purinérgicos P2/efectos de los fármacos , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Transducción de Señal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Tionucleótidos/metabolismo , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo
17.
Neurochem Int ; 47(6): 418-29, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16040158

RESUMEN

In the prostatic portion of rat vas deferens, activation of adenosine A 2B-receptors, beta2-adrenoceptors, adenylyl cyclase or protein kinase A caused a facilitation of noradrenaline release. Blockade of alpha2-adrenoceptors with yohimbine (1 microM) attenuated the facilitation mediated by adenosine A 2B-receptors and by direct activation of adenylyl cyclase with forskolin but not that mediated by beta2-adrenoceptors or by direct activation of protein kinase A with 8-bromoadenosine-3',5'-cyclicAMP. The adenosine A 2B- and the beta2-adrenoceptor-mediated facilitation was prevented by the adenylyl cyclase inhibitors, 2',5'-dideoxy-adenosine (3 microM) and 9-cyclopentyladenine (100 microM), at concentrations that also attenuated the release enhancing effect of forskolin, but were not changed by the phospholipase C inhibitor 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U-73122, 1 microM). Facilitation of noradrenaline release mediated by adenosine A 2B-receptors was also attenuated by activation of protein kinase C with the phorbol ester 12-myristate 13-acetate (1 microM) and by inhibition of Gbetagamma subunits with an anti-betagamma peptide; facilitation mediated by beta2-adrenoceptors was mainly attenuated by the calmodulin inhibitor calmidazolium (10 microM) and by the calmodulin kinase II inhibitor (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzene-sulfonamide phosphate (KN-93, 5 microM). The results suggest that adenosine A 2B- but not beta2-adrenoceptor-mediated facilitation of noradrenaline release is enhanced by an ongoing activation of alpha2-adrenoceptors. They further suggest that adenosine A 2B-receptors and beta2-adrenoceptors are coupled to distinct adenylyl cyclase isoforms what may explain the different influence of alpha2-adrenoceptor signalling pathway on the facilitatory effects mediated by the two adenylyl cyclase coupled receptors.


Asunto(s)
Adenilil Ciclasas/metabolismo , Norepinefrina/metabolismo , Receptor Cross-Talk/fisiología , Receptor de Adenosina A2B/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Conducto Deferente/metabolismo , Inhibidores de Adenilato Ciclasa , Antagonistas Adrenérgicos alfa/farmacología , Animales , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Colforsina/farmacología , Inhibidores Enzimáticos/farmacología , Masculino , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptor Cross-Talk/efectos de los fármacos , Receptor de Adenosina A2B/efectos de los fármacos , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Fibras Simpáticas Posganglionares/metabolismo , Conducto Deferente/inervación
18.
Neuropharmacology ; 47(2): 216-24, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15223300

RESUMEN

In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Norepinefrina/metabolismo , Próstata/metabolismo , Proteína Quinasa C/metabolismo , Receptor de Adenosina A2B/metabolismo , Conducto Deferente/metabolismo , Adenosina/metabolismo , Agonistas del Receptor de Adenosina A2 , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III , Prostaglandinas/metabolismo , Próstata/efectos de los fármacos , Próstata/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Conducto Deferente/efectos de los fármacos , Conducto Deferente/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA