Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402094, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031525

RESUMEN

A comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species. The experimental absorption spectra of the aggregated species are accurately reproduced by quantum chemical calculations using the Spano's model, including excitonic coupling for the dimeric forms and full vibronic resolution of the absorption bands. The strong excitonic coupling taking place is key to understand the electronic structure of the dimeric aggregates and has been instrumental to disentangle the type of H-aggregation. This study is of relevance to get a better understanding of the molecular aggregation of organic p-conjugated chromophores and is useful as a guideline for the refinement of the engineering of molecular materials for which supramolecular design is required.

2.
J Phys Chem A ; 128(30): 6140-6157, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041954

RESUMEN

Quantum interference (QI) effects offer unique opportunities to modulate charge transport through single molecules. In recent years, several transmission selection rules have been developed to determine constructive and destructive QIs in an intuitive and simple manner, although some of these rules fail for cross-conjugated systems. In this work, we evaluate the performance of distinct transmission rules on a broad series of anthracene and fluorene derivatives with distinctive structural features including linear-, broken-, and cross-conjugation, heteroatoms, and five-membered rings as such species affords a predictive challenge for the qualitative selection rules for QI effects. The electron transport properties and local transmission plots are first evaluated by combining DFT and the nonequilibrium Green function method allowing for an equal-footing comparison of the conductance of the different polycyclic compounds. Our findings are in line with experimental observations on the influence of the type of conjugation and the connectivity to the metallic electrodes on the transport properties. Thus, cross-conjugated systems exhibit reduced conductance values as compared to the linear-conjugated ones, although the transmission is enhanced in the meta-connected junctions. Remarkably, our study reveals that aromatic cores exhibit generally larger zero-bias conductance for a given connectivity, in contrast to the negative aromaticity-conductance relationship found in literature.

3.
Chem Sci ; 14(46): 13468-13474, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033889

RESUMEN

A new diradical based on diindenocarbazole or difluorenopyrrole was synthesized and experimentally characterized by optical, electrochemical, and magnetic techniques, as well as quantum chemical calculations. The isomerism of these structures tunes the diradical character and the associated properties, representing a unique case of such important modulation. A full study of the electronic structure was carried out considering the perturbative interactions between different canonical forms as well as the anti-aromatic character of the molecular cores. Such a study reveals how we can tune diradical character simply by reorganizing the bonding patterns at constant chemical costs (composition).

4.
Chem Sci ; 14(10): 2698-2705, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908964

RESUMEN

Asymmetric diradical molecular systems with different resonance mechanisms are largely unexplored. Herein, two conjugated asymmetric diradicals with Blatter and phenoxyl moieties (pBP and mBP) have been synthesized and studied in depth. A complete set of spectroscopic, X-ray crystallographic and magnetic techniques, together with quantum chemical calculations, have been used. The para-isomer (pBP) bears diradical and zwitterionic resonant forms, the latter by a electron delocalization mechanism, which are synergistically integrated by a sequence of nitrogen, provided by the Blatter moiety imine and amine (of different acceptor nature). In the meta-isomer (mBP), the zwitterionic form promoted in pBP by the lone-pair electron of the amine nitrogen is not available, yet it possesses a pseudo-hyperconjugation effect where the N lone pair mediates in a bonding coupling in a counter homolytic bond scission mechanism. Both electronic effects converge to promote medium diradical characters and narrow singlet-triplet gaps to the two electronic isomers. All these aspects delineate the subtle balance that shapes the electronic structure of open-shell molecules, which is even more challenging in the case of asymmetric systems, such as those described here with asymmetric phenoxyl-Blatter diradicals.

5.
Nat Commun ; 12(1): 6262, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716307

RESUMEN

π-conjugated radicals have great promise for use in organic spintronics, however, the mechanisms of spin relaxation and mobility related to radical structural flexibility remain unexplored. Here, we describe a dumbbell shape azobenzene diradical and correlate its solid-state flexibility with spin relaxation and mobility. We employ a combination of X-ray diffraction and Raman spectroscopy to determine the molecular changes with temperature. Heating leads to: i) a modulation of the spin distribution; and ii) a "normal" quinoidal → aromatic transformation at low temperatures driven by the intramolecular rotational vibrations of the azobenzene core and a "reversed" aromatic → quinoidal change at high temperatures activated by an azobenzene bicycle pedal motion amplified by anisotropic intermolecular interactions. Thermal excitation of these vibrational states modulates the diradical electronic and spin structures featuring vibronic coupling mechanisms that might be relevant for future design of high spin organic molecules with tunable magnetic properties for solid state spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...