RESUMEN
BACKGROUND: Tumor progression is based on a close interaction between cancer cells and Tumor MicroEnvironment (TME). Here, we focus on the role that Cancer Associated Fibroblasts (CAFs), Mesenchymal Stem Cells (MSCs) and microRNAs (miRs) play in breast cancer and melanoma malignancy. METHODS: We used public databases to investigate miR-214 expression in the stroma compartment of primary human samples and evaluated tumor formation and dissemination following tumor cell injections in miR-214 overexpressing (miR-214over) and knock out (miR-214ko) mice. In addition, we dissected the impact of Conditioned Medium (CM) or Extracellular Vesicles (EVs) derived from miR-214-rich or depleted stroma cells on cell metastatic traits. RESULTS: We evidence that the expression of miR-214 in human cancer or metastasis samples mostly correlates with stroma components and, in particular, with CAFs and MSCs. We present data revealing that the injection of tumor cells in miR-214over mice leads to increased extravasation and metastasis formation. In line, treatment of cancer cells with CM or EVs derived from miR-214-enriched stroma cells potentiate cancer cell migration/invasion in vitro. Conversely, dissemination from tumors grown in miR-214ko mice is impaired and metastatic traits significantly decreased when CM or EVs from miR-214-depleted stroma cells are used to treat cells in culture. Instead, extravasation and metastasis formation are fully re-established when miR-214ko mice are pretreated with miR-214-rich EVs of stroma origin. Mechanistically, we also show that tumor cells are able to induce miR-214 production in stroma cells, following the activation of IL-6/STAT3 signaling, which is then released via EVs subsequently up-taken by cancer cells. Here, a miR-214-dependent pro-metastatic program becomes activated. CONCLUSIONS: Our findings highlight the relevance of stroma-derived miR-214 and its release in EVs for tumor dissemination, which paves the way for miR-214-based therapeutic interventions targeting not only tumor cells but also the TME.
Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , MicroARNs , Humanos , Animales , Ratones , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Mama/patología , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo , Microambiente TumoralRESUMEN
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.
Asunto(s)
MicroARNs , Neoplasias , Adhesión Celular/genética , Movimiento Celular/genética , Glucosa , Glutamina/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patologíaRESUMEN
An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.
Asunto(s)
Selectina E/antagonistas & inhibidores , Células Endoteliales/metabolismo , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Selectina E/biosíntesis , Selectina E/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Microambiente TumoralRESUMEN
The metabolism of cancer cells is generally very different from what is found in normal counterparts. However, in a tumor mass, the continuous crosstalk and competition for nutrients and oxygen among different cells lead to metabolic alterations, not only in cancer cells, but also in the different stromal and immune cells of the tumor microenvironment (TME), which are highly relevant for tumor progression. MicroRNAs (miRs) are small non-coding RNAs that silence their mRNA targets post-transcriptionally and are involved in numerous physiological cell functions as well as in the adaptation to stress situations. Importantly, miRs can also be released via extracellular vesicles (EVs) and, consequently, take part in the bidirectional communication between tumor and surrounding cells under stress conditions. Certain miRs are abundantly expressed in stromal and immune cells where they can regulate various metabolic pathways by directly suppressing enzymes or transporters as well as by controlling important regulators (such as transcription factors) of metabolic processes. In this review, we discuss how miRs can induce metabolic reprogramming in stromal (fibroblasts and adipocytes) and immune (macrophages and T cells) cells and, in turn, how the biology of the different cells present in the TME is able to change. Finally, we debate the rebound of miR-dependent metabolic alterations on tumor progression and their implications for cancer management.
RESUMEN
microRNAs (miRNAs) are small non-coding RNAs acting as negative regulators of gene expression and involved in tumor progression. We recently showed that inhibition of the pro-metastatic miR-214 and simultaneous overexpression of its downstream player, the anti-metastatic miR-148b, strongly reduced metastasis formation. To explore the therapeutic potential of miR-148b, we generated a conjugated molecule aimed to target miR-148b expression selectively to tumor cells. Precisely, we linked miR-148b to GL21.T, an aptamer able to specifically bind to AXL, an oncogenic tyrosine kinase receptor highly expressed on cancer cells. Axl-148b conjugate was able to inhibit migration and invasion of AXL-positive, but not AXL-negative, cancer cells, demonstrating high efficacy and selectivity in vitro. In parallel, expression of ALCAM and ITGA5, two miR-148b direct targets, was reduced. More importantly, axl-148b chimeric aptamers were able to inhibit formation and growth of 3D-mammospheres, to induce necrosis and apoptosis of treated xenotransplants, as well as to block breast cancer and melanoma dissemination and metastatization in mice. Relevantly, axl aptamer acted as specific delivery tool for miR-148b, but it also actively contributed to inhibit metastasis formation, together with miR-148b. In conclusion, our data show that axl-148b conjugate is able to inhibit tumor progression in an axl- and miR-148b-dependent manner, suggesting its potential development as therapeutic molecule.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/metabolismo , Melanoma/fisiopatología , MicroARNs/metabolismo , Células Neoplásicas Circulantes , Células Tumorales Cultivadas/metabolismo , Células Tumorales Cultivadas/fisiologíaRESUMEN
Cancer is a multistep disease based on crucial interactions between tumor cells and the microenvironment (extracellular matrix and stroma/immune cells). In fact, during dissemination, tumor cells have to escape from the primary tumor mass, cross the basal membrane, interact with endothelial cells to enter blood vessels (intravasation), survive in the bloodstream, get in contact with endothelial cells again to exit the bloodstream (extravasation) and seed in distant organs. Interactions between tumor and stroma cells are strongly coordinated by microRNAs (miRNAs), small non-coding RNAs able to silence protein coding genes by binding to specific recognition sites, mostly located at the 3' UTR of mature mRNAs. Relevantly, miRNA expression is often altered (overexpression or downregulation) in tumor cells and influenced by stroma cells. At the same time, miRNAs are abundant and essential in stroma cells during tumor cell dissemination and their expression is influenced by tumor cells. In fact, for instance, conditional ablation of Dicer in the endothelium of tumor bearing-mice leads to reduced tumor growth and microvessel density. In this review, we specifically focus on the role of miRNAs in endothelial cells regarding their positive or negative intervention on tumor angiogenesis or lymphoangiogenesis or when tumor cells detach from the tumor mass and intravasate or extravasate in/out of the blood vessels. Examples of pro-angiogenic miRNAs are miR-9 or miR-494, often overexpressed in tumors, which accumulate in tumor cell microvescicles and, therefore, get transferred to endothelial cells where they induce migration and angiogenesis. Differently, miR-200 and miR-128 are often downregulated in tumors and inhibit angiogenesis and lymphoangiogenesis. Instead, miR-126 controls intravasation while miR-146a, miR-214, miR-148b govern extravasation, in a positive or negative manner. Finally, at the end, we summarize opportunities for therapeutic interventions based on miRNAs acting on endothelial cells.
Asunto(s)
Comunicación Celular/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral/genética , Animales , Comunicación Celular/inmunología , Progresión de la Enfermedad , Humanos , Estadificación de Neoplasias , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Microambiente Tumoral/inmunologíaRESUMEN
In the last decades, progresses in medical oncology have ameliorated the treatment of patients and their outcome. However, further improvements are still necessary, in particular for certain types of tumors such as pancreatic, gastric, and lung cancer as well as acute myeloid leukemia where early detection and monitoring of the disease are crucial for final patient outcome. Liquid biopsy represents a great advance in the field because it is less invasive, less time-consuming, and safer compared to classical biopsies and it can be useful to monitor the evolution of the disease as well as the response of patients to therapy. Liquid biopsy allows the detection of circulating tumor cells, nucleic acids, and exosomes not only in blood but also in different biological fluids: urine, saliva, pleural effusions, cerebrospinal fluid, and stool. Among the potential biomarkers detectable in liquid biopsies, microRNAs (miRNAs) are gaining more and more attention, since they are easily detectable, quite stable in biological fluids, and show high sensitivity. Many data demonstrate that miRNAs alone or in combination with other biomarkers could improve the diagnostic and prognostic power for many different tumors. Despite this, standardization of methods, sample preparation, and analysis remain challenging and a huge effort should be made to address these issues before miRNA biomarkers can enter the clinic. This review summarizes the main findings in the field of circulating miRNAs in both solid and hematological tumors.
RESUMEN
miR-214 and miR-148b have been proposed to antagonize the effects of each other in enabling or blocking metastasis, respectively. In this study, we provide evidence deepening their role and interrelationship in the process of metastatic dissemination. Depleting miR-214 or elevating miR-148b blocked the dissemination of melanoma or breast cancer cells, an effect that could be accentuated by dual alteration. Mechanistic investigations indicated that dual alteration suppressed passage of malignant cells through the blood vessel endothelium by reducing expression of the cell adhesion molecules ITGA5 and ALCAM. Notably, transendothelial migration in vitro and extravasation in vivo impaired by singly alternating miR-214 or miR-148b could be overridden by overexpression of ITGA5 or ALCAM in the same tumor cells. In clinical specimens of primary breast cancer or metastatic melanoma, we found a positive correlation between miR-214 and ITGA5 or ALCAM along with an inverse correlation of miR-214 and miR-148b in the same specimens. Our findings define an antagonistic relationship of miR-214 and miR-148b in determining the dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation. Cancer Res; 76(17); 5151-62. ©2016 AACR.