Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145984

RESUMEN

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.

2.
Microorganisms ; 11(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38004717

RESUMEN

Lyophilization is a widely employed long-term preservation method in which the bacterial survival rate largely depends on the cryoprotectant used. Bacillus cereus strain PBC was selected for its ability to thrive in environments contaminated with arsenic, lead, and cadmium, tolerate 500 ppm of free cyanide, and the presence of genes such as ars, cad, ppa, dap, among others, associated with the bioremediation of toxic compounds and enterotoxins (nheA, nheB, nheC). Following lyophilization, the survival rates for Mannitol 2.5%, Mannitol 10%, and Glucose 1% were 98.02%, 97.12%, and 96.30%, respectively, with the rates being lower than 95% for other sugars. However, during storage, for the same sugars, the survival rates were 78.71%, 97.12%, and 99.97%, respectively. In the cake morphology, it was found that the lyophilized morphology showed no relationship with bacterial survival rate. The best cryoprotectant for the PBC strain was 1% glucose since it maintained constant and elevated bacterial growth rates during storage, ensuring that the unique characteristics of the bacterium were preserved over time. These findings hold significant implications for research as they report a new Bacillus cereus strain with the potential to be utilized in bioremediation processes.

3.
Res Sq ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993715

RESUMEN

(R,S)-methadone ((R,S)-MTD) is a racemic µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers used for the treatment of opioid use disorder (OUD) and pain. (R)-MTD is used as an OUD treatment, has high MOR potency, and is believed to mediate (R,S)-MTD's therapeutic efficacy. (S)-MTD is in clinical development as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. In opposition to this purported mechanism of action, we found that (S)-MTD does not occupy NMDARs in vivo in rats. Instead, (S)-MTD produced MOR occupancy and induced analgesia with similar efficacy as (R)-MTD. Unlike (R)-MTD, (S)-MTD was not self-administered and failed to increase locomotion or extracellular dopamine levels indicating low abuse liability. Moreover, (S)-MTD antagonized the effects of (R)-MTD in vivo and exhibited unique pharmacodynamic properties, distinct from those of (R)-MTD. Specifically, (S)-MTD acted as a MOR partial agonist with a specific loss of efficacy at the MOR-galanin 1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use, as well as those of (R,S)-MTD.

4.
Neuropharmacology ; 223: 109329, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375695

RESUMEN

Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.


Asunto(s)
Ácido Glutámico , Receptor de Adenosina A2A , Receptor de Adenosina A2A/metabolismo , Cuerpo Estriado/metabolismo , Receptores de Cannabinoides , Adenosina , Colinérgicos
5.
Front Endocrinol (Lausanne) ; 13: 1014678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267569

RESUMEN

The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.


Asunto(s)
Dopamina , Receptores de Dopamina D4 , Humanos , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Norepinefrina , Adrenérgicos , Aminoácidos , Prolina
6.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268590

RESUMEN

Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A1 receptors (A1Rs) and upregulation of the excitatory adenosine A2A receptors (A2ARs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A1R/A2AR stoichiometry in favor of A2ARs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A1Rs and A2ARs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A1R/A2AR ratio in VGLUT1 positive-striatal terminals.


Asunto(s)
Síndrome de las Piernas Inquietas
7.
J Neurosci ; 42(6): 940-953, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34876469

RESUMEN

Ghrelin receptor, also known as growth hormone secretagogue receptor (GHS-R1a), is coexpressed with its truncated isoform GHS-R1b, which does not bind ghrelin or signal, but oligomerizes with GHS-R1a, exerting a complex modulatory role that depends on its relative expression. D1 dopamine receptor (D1R) and D5R constitute the two D1-like receptor subtypes. Previous studies showed that GHS-R1b also facilitates oligomerization of GHS-R1a with D1R, conferring GHS-R1a distinctive pharmacological properties. Those include a switch in the preferred coupling of GHS-R1a from Gq to Gs and the ability of D1R/D5R agonists and antagonists to counteract GHS-R1a signaling. Activation of ghrelin receptors localized in the ventral tegmental area (VTA) seems to play a significant role in the contribution of ghrelin to motivated behavior. In view of the evidence indicating that dopaminergic cells of the VTA express ghrelin receptors and D5R, but not D1R, we investigated the possible existence of functional GHS-R1a:GHS-R1b:D5R oligomeric complexes in the VTA. GHS-R1a:GHS-R1b:D5R oligomers were first demonstrated in mammalian transfected cells, and their pharmacological properties were found to be different from those of GHS-R1a:GHS-R1b:D1R oligomers, including weak Gs coupling and the ability of D1R/D5R antagonists, but not agonists, to counteract the effects of ghrelin. However, analyzing the effect of ghrelin in the rodent VTA on MAPK activation with ex vivo experiments, on somatodendritic dopamine release with in vivo microdialysis and on the activation of dopaminergic cells with patch-clamp electrophysiology, provided evidence for a predominant role of GHS-R1a:GHS-R1b:D1R oligomers in the rodent VTA as main mediators of the dopaminergic effects of ghrelin.SIGNIFICANCE STATEMENT The activation of ghrelin receptors localized in the ventral tegmental area (VTA) plays a significant role in the contribution of ghrelin to motivated behavior. We present evidence that indicates these receptors form part of oligomeric complexes that include the functional ghrelin receptor GHS-R1a, its truncated nonsignaling isoform GHS-R1b, and the dopamine D1 receptor (D1R). The binding of ghrelin to these complexes promotes activation of the dopaminergic neurons of the VTA by activation of adenylyl cyclase-protein kinase A signaling, which can be counteracted by both GHS-R1a and D1R antagonists. Our study provides evidence for a predominant role of GHS-R1a:GHS-R1b:D1R oligomers in rodent VTA as main mediators of the dopaminergic effects of ghrelin.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Ghrelina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ghrelina/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar
8.
Sleep Med Clin ; 16(2): 249-267, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33985651

RESUMEN

Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.


Asunto(s)
Dopamina/metabolismo , Agitación Psicomotora/etiología , Síndrome de las Piernas Inquietas/diagnóstico , Humanos
9.
J Neurosci ; 40(39): 7510-7522, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32859717

RESUMEN

Dopamine (DA) signals in the striatum are critical for a variety of vital processes, including motivation, motor learning, and reinforcement learning. Striatal DA signals can be evoked by direct activation of inputs from midbrain DA neurons (DANs) as well as cortical and thalamic inputs to the striatum. In this study, we show that in vivo optogenetic stimulation of prelimbic (PrL) and infralimbic (IL) cortical afferents to the striatum triggers an increase in extracellular DA concentration, which coincides with elevation of striatal acetylcholine (ACh) levels. This increase is blocked by a nicotinic ACh receptor (nAChR) antagonist. Using single or dual optogenetic stimulation in brain slices from male and female mice, we compared the properties of these PrL/IL-evoked DA signals with those evoked by stimulation from midbrain DAN axonal projections. PrL/IL-evoked DA signals are undistinguishable from DAN evoked DA signals in their amplitudes and electrochemical properties. However, PrL/IL-evoked DA signals are spatially restricted and preferentially recorded in the dorsomedial striatum. PrL/IL-evoked DA signals also differ in their pharmacological properties, requiring activation of glutamate and nicotinic ACh receptors. Thus, both in vivo and in vitro results indicate that cortical evoked DA signals rely on recruitment of cholinergic interneurons, which renders DA signals less able to summate during trains of stimulation and more sensitive to both cholinergic drugs and temperature. In conclusion, cortical and midbrain inputs to the striatum evoke DA signals with unique spatial and pharmacological properties that likely shape their functional roles and behavioral relevance.SIGNIFICANCE STATEMENT Dopamine signals in the striatum play a critical role in basal ganglia function, such as reinforcement and motor learning. Different afferents to the striatum can trigger dopamine signals, but their release properties are not well understood. Further, these input-specific dopamine signals have only been studied in separate animals. Here we show that optogenetic stimulation of cortical glutamatergic afferents to the striatum triggers dopamine signals both in vivo and in vitro These afferents engage cholinergic interneurons, which drive dopamine release from dopamine neuron axons by activation of nicotinic acetylcholine receptors. We also show that cortically evoked dopamine signals have other unique properties, including spatial restriction and sensitivity to temperature changes than dopamine signals evoked by stimulation of midbrain dopamine neuron axons.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Corteza Prefrontal/metabolismo , Acetilcolina/metabolismo , Animales , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Potenciales Evocados , Femenino , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología
10.
Adv Pharmacol ; 84: 3-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31229176

RESUMEN

Our working hypothesis is that a hypoadenosinergic state is a main pathogenetic factor that determines the sensory-motor symptoms and hyperarousal of restless legs syndrome (RLS). We have recently demonstrated that brain iron deficiency (BID) in rodents, a well-accepted animal model of RLS, is associated with a generalized downregulation of adenosine A1 receptors (A1R) in the brain and with hypersensitivity of corticostriatal glutamatergic terminals. Here, we first review the experimental evidence for a pivotal role of adenosine and A1R in the control of striatal glutamatergic transmission and the rationale for targeting putative downregulated striatal A1R in RLS patients, which is supported by recent clinical results obtained with dipyridamole, an inhibitor of the nucleoside transporters ENT1 and ENT2. Second, we perform optogenetic-microdialysis experiments in rats to demonstrate that A1R determine the sensitivity of corticostriatal glutamatergic terminals and the ability of dipyridamole to counteract optogenetically-induced corticostriatal glutamate release in both animals with BID and controls. Thus, a frequency of optogenetic stimulation that was ineffective at inducing cortico-striatal glutamate release in control rats became effective with the local perfusion of a selective A1R antagonist. Furthermore, in animals with and without BID, the striatal application of dipyridamole blocked the optogenetic-induced glutamate release and decreased basal levels of glutamate, which was counteracted by the A1R antagonist. The results support the clinical application of ENT1 inhibitors in RLS.


Asunto(s)
Adenosina/metabolismo , Cuerpo Estriado/patología , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Animales , Transporte Biológico , Ácido Glutámico/metabolismo , Masculino , Optogenética , Ratas Sprague-Dawley , Receptor de Adenosina A1/metabolismo
11.
Mol Neurobiol ; 56(10): 6756-6769, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30919214

RESUMEN

Several studies found in vitro evidence for heteromerization of dopamine D1 receptors (D1R) and D3 receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vitro, with mammalian transfected cells, it has been hypothesized that those behavioral effects depend on a D1R-D3R heteromer-mediated G protein-independent signaling. Here, we demonstrate the presence on D1R-D3R heteromers in the mouse ventral striatum by using a synthetic peptide that selectively destabilizes D1R-D3R heteromers. Parallel locomotor activity and ex vivo experiments in reserpinized mice and in vitro experiments in D1R-D3R mammalian transfected cells were performed to dissect the signaling mechanisms of D1R-D3R heteromers. Co-administration of D1R and D3R agonists in reserpinized mice produced synergistic locomotor activation and a selective synergistic AKT phosphorylation in the most ventromedial region of the striatum in the shell of the nucleus accumbens. Application of the destabilizing peptide in transfected cells and in the shell of the nucleus accumbens allowed demonstrating that both in vitro and in vivo co-activation of D3R induces a switch from G protein-dependent to G protein-independent D1R-mediated signaling determined by D1R-D3R heteromerization. The results therefore demonstrate that a biased G protein-independent signaling of D1R-D3R heteromers localized in the shell of the nucleus accumbens mediate the locomotor synergistic effects of D1R and D3R agonists in reserpinized mice.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D3/metabolismo , Transducción de Señal , Animales , Células CHO , Cricetinae , Cricetulus , Sinergismo Farmacológico , Células HEK293 , Humanos , Isoquinolinas/farmacología , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Dopamina D3/antagonistas & inhibidores , Salicilamidas/farmacología , Sulfonamidas/farmacología
12.
J Clin Invest ; 129(7): 2730-2744, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30913037

RESUMEN

Identifying non-addictive opioid medications is a high priority in medical sciences, but µ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of µ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone's weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of "high" in methadone-maintained patients. These results suggest that µ-opioid-Gal1 receptor heteromers mediate the dopaminergic effects of opioids that may lead to a lower addictive liability of opioids with selective low potency for the µ-opioid-Gal1 receptor heteromer, exemplified by methadone.


Asunto(s)
Analgésicos Opioides/farmacología , Metadona/farmacología , Morfina/farmacología , Multimerización de Proteína , Receptor de Galanina Tipo 1/metabolismo , Receptores Opioides mu/metabolismo , Animales , Línea Celular , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Galanina Tipo 1/genética , Receptores Opioides mu/genética
13.
Iran Endod J ; 14(2): 115-121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-36855448

RESUMEN

Introduction: The aim of the present study was to compare the efficacy of four NiTi instruments with different properties (shape memory and control memory), in both rotary and reciprocating motions, during retreatment procedures. Methods and Materials: Mesial canals of thirty-two mandibular molars were instrumented, obturated, and then scanned with" Cone-beam Computed Tomography" (CBCT). Teeth were randomly divided into 4 groups (n=8) according to each system: "Shape Memory" (SM) instruments including Reciproc (R25 file) and ProTaper Next (X3 and X2 file), "Controlled Memory" (CM) instruments including WaveOne Gold (Primary file) and Hyflex (30.06 and 25.06 file). The specimens were rescanned after retreatment procedures. The volume of the residual material left inside the canals, the operating time and the fractured files were analyzed. ANOVA and student t-tests were used for statistical analysis. Results: There were no significant differences in the percentage of the residual filling material or requiring time amongst different groups of instruments (P>0.05). However, CM instruments presented the highest frequency of fractured files [2 SM instruments (12.5%) and 7 CM instruments (43.75%)] with a significant difference (P=0.023). Conclusions: This ex vivo study showed that CM and SM instruments can remove filling materials from mandibular mesial root canals during retreatment procedures; nonetheless the CM instruments had a higher frequency of fractured files. No system was able to completely remove the filling materials. Therefore, additional procedures and techniques are needed to improve root canal cleanliness.

14.
Front Pharmacol ; 9: 243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686613

RESUMEN

The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.

15.
Ann Neurol ; 82(6): 951-960, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29171915

RESUMEN

OBJECTIVE: The first aim was to demonstrate a previously hypothesized increased sensitivity of corticostriatal glutamatergic terminals in the rodent with brain iron deficiency (BID), a pathogenetic model of restless legs syndrome (RLS). The second aim was to determine whether these putative hypersensitive terminals could constitute a significant target for drugs effective in RLS, including dopamine agonists (pramipexole and ropinirole) and α2 δ ligands (gabapentin). METHODS: A recently introduced in vivo optogenetic-microdialysis approach was used, which allows the measurement of the extracellular concentration of glutamate upon local light-induced stimulation of corticostriatal glutamatergic terminals. The method also allows analysis of the effect of local perfusion of compounds within the same area being sampled for glutamate. RESULTS: BID rats showed hypersensitivity of corticostriatal glutamatergic terminals (lower frequency of optogenetic stimulation to induce glutamate release). Both hypersensitive and control glutamatergic terminals were significant targets for locally perfused pramipexole, ropinirole, and gabapentin, which significantly counteracted optogenetically induced glutamate release. The use of selective antagonists demonstrated the involvement of dopamine D4 and D2 receptor subtypes in the effects of pramipexole. INTERPRETATION: Hypersensitivity of corticostriatal glutamatergic terminals can constitute a main pathogenetic mechanism of RLS symptoms. Selective D4 receptor agonists, by specifically targeting these terminals, should provide a new efficient treatment with fewer secondary effects. Ann Neurol 2017;82:951-960.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Terminales Presinápticos/metabolismo , Síndrome de las Piernas Inquietas/metabolismo , Aminas/metabolismo , Animales , Corteza Cerebral/química , Corteza Cerebral/patología , Cuerpo Estriado/química , Cuerpo Estriado/patología , Ácidos Ciclohexanocarboxílicos/metabolismo , Agonistas de Dopamina/metabolismo , Gabapentina , Masculino , Microdiálisis/métodos , Optogenética/métodos , Terminales Presinápticos/química , Terminales Presinápticos/patología , Ratas , Ratas Sprague-Dawley , Síndrome de las Piernas Inquietas/patología , Ácido gamma-Aminobutírico/metabolismo
16.
Sci Adv ; 3(1): e1601631, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28097219

RESUMEN

Polymorphic variants of the dopamine D4 receptor gene (DRD4) have been repeatedly associated with numerous neuropsychiatric disorders. Yet, the functional role of the D4 receptor and the functional differences of the products of DRD4 polymorphic variants remained enigmatic. Immunohistochemical and optogenetic-microdialysis experiments were performed in knock-in mice expressing a D4 receptor with the long intracellular domain of a human DRD4 polymorphic variant associated with attention deficit hyperactivity disorder (ADHD). When compared with the wild-type mouse D4 receptor, the expanded intracellular domain of the humanized D4 receptor conferred a gain of function, blunting methamphetamine-induced cortical activation and optogenetic and methamphetamine-induced corticostriatal glutamate release. The results demonstrate a key role of the D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission. Furthermore, these data imply that enhanced D4 receptor-mediated dopaminergic control of corticostriatal transmission constitutes a vulnerability factor of ADHD and other neuropsychiatric disorders.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Receptores de Dopamina D4/metabolismo , Transmisión Sináptica , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Cuerpo Estriado/patología , Técnicas de Sustitución del Gen , Ácido Glutámico/genética , Humanos , Ratones , Ratones Transgénicos , Dominios Proteicos , Receptores de Dopamina D4/genética
17.
J Neurosci ; 37(5): 1176-1186, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007761

RESUMEN

The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of µ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT: The µ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder.


Asunto(s)
Receptores de Galanina/metabolismo , Receptores Opioides mu/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neuronas Dopaminérgicas/efectos de los fármacos , Galanina/farmacología , Células HEK293 , Humanos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica v-akt/fisiología , Fosforilación , Ratas , Receptor Cross-Talk , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 2/metabolismo , Receptores de Galanina/genética , Receptores Opioides mu/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Transfección
18.
Front Neurosci ; 11: 722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29358902

RESUMEN

The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory control of glutamatergic neurotransmission in the cortex and other non-striatal brain areas, which altogether determine both PLMS and hyperarousal. Since A1R agonists would be associated with severe cardiovascular effects, it was hypothesized that inhibitors of nucleoside equilibrative transporters, such as dipyridamole, by increasing the tonic A1R activation mediated by endogenous adenosine, could represent a new alternative therapeutic strategy for RLS. In fact, preliminary clinical data indicate that dipyridamole can significantly improve the symptomatology of RLS.

19.
Neuropharmacology ; 111: 160-168, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27600688

RESUMEN

Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Deficiencias de Hierro , Receptor de Adenosina A1/metabolismo , Receptores de Adenosina A2/metabolismo , Síndrome de las Piernas Inquietas/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Sitios de Unión , Antagonistas de los Receptores de Dopamina D2/farmacología , Regulación hacia Abajo , Ferritinas/sangre , Hierro/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo
20.
Adv Mater ; 28(25): 5112-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27144875

RESUMEN

A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%. Importantly, it is found that LT-NiO boosts the limits of open-circuit voltages toward an impressive non-radiative voltage loss of 0.226 V only, whereas PEDOT: PSS suffers from significant large non-radiative recombination losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA