Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Mar Pollut Bull ; 190: 114801, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965265

RESUMEN

Survival in the early life stages is a major factor determining the growth and stability of wildlife populations. For sea turtles, nest location must provide favorable conditions to support embryonic development. Hatching success and incubation environment of green turtle eggs were examined in July 2019 at Karan Island, a major nesting site for the species in the Arabian Gulf. Mean hatching success averaged at 38.8 % (range = 2.5-75.0 %, n = 14). Eggs that suffered early embryonic death (EED) and late embryonic death (LED) represented 19.8 % (range: 3.3-64.2 %) and 41.4 % (range: 4.8-92.6 %) of the clutch on average, respectively. Nest sand was either coarse (0.5-1 mm: mean 44.8 %, range = 30.4-56.9 % by dry weight, n = 14) or medium (0.25-0.5 mm: mean 33.6 %, range = 12.0-45.5 % by dry weight, n = 14). Mean sand moisture (4.0 %, range = 3.2-4.9 %, n = 14) was at the lower margin for successful development. Hatching success was significantly higher in clutches with sand salinity <1500 EC.uS/cm (n = 5) than those above 2500 EC.uS/cm (n = 5). Mean clutch temperatures at 1200 h increased by an average of 5.4 °C during the 50-d post-oviposition from 31.2 °C to 36.6 °C. Embryos experienced lethally high temperatures in addition to impacts of other environmental factors (salinity, moisture, sand grain size), which was related to reduced hatching success. Conservation initiatives must consider the synergistic influence of the above parameters in formulating strategies to improve the overall resilience of the green turtle population in the Arabian Gulf to anthropogenic and climate change-related stressors.


Asunto(s)
Tortugas , Femenino , Animales , Arena , Comportamiento de Nidificación , Temperatura , Calor
2.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115749

RESUMEN

Sequestration of plastics in sediments is considered the ultimate sink of marine plastic pollution that would justify unexpectedly low loads found in surface waters. Here, we demonstrate that mangroves, generally supporting high sediment accretion rates, efficiently sequester plastics in their sediments. To this end, we extracted microplastics from dated sediment cores of the Red Sea and Arabian Gulf mangrove (Avicennia marina) forests along the Saudi Arabian coast. We found that microplastics <0.5 mm dominated in mangrove sediments, helping explain their scarcity, in surface waters. We estimate that 50 ± 30 and 110 ± 80 metric tons of plastic may have been buried since the 1930s in mangrove sediments across the Red Sea and the Arabian Gulf, respectively. We observed an exponential increase in the plastic burial rate (8.5 ± 1.2% year-1) since the 1950s in line with the global plastic production increase, confirming mangrove sediments as long-term sinks for plastics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...