Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732319

RESUMEN

A 15-year-old young girl was found dead at home. There were no indications of any intervention or the application of force. On the previous day, she was admitted to hospital because of palpitations, fatigue, a headache, and a swollen neck. During a physical examination, a swollen thyroid gland and tachycardia were found. In the family history, her mother had thyroid disease. According to the laboratory values, she had elevated thyroid hormone levels. After administration of beta-blockers, the patient was discharged and died at home during the night. The parents denounced the hospital for medical malpractice; therefore, a Forensic Autopsy was performed. Based on the available clinical data, the autopsy, histological and toxicological results, the cause of death was stated as multiorgan failure due to disseminated intravascular coagulation (DIC) caused by the autoimmune Graves disease. The forensic assessment of the case does not reveal medical malpractice. Post-mortem diagnoses of thyroid disorders in cases of sudden death can be challenging. However, as the reported case illustrates, the diagnosis could be established after a detailed evaluation of antemortem clinical data, autopsy results, histology, and a toxicological examination.

2.
Front Oncol ; 11: 681603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616669

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.

3.
Int J Mol Sci ; 19(7)2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-29966365

RESUMEN

Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.


Asunto(s)
Melanoma/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Melanocitos/metabolismo , Melanoma/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Int J Oncol ; 48(3): 983-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26717964

RESUMEN

Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Ácido Hialurónico/biosíntesis , Melanoma/metabolismo , Proteína Fosfatasa 2/metabolismo , Calcineurina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Ciclosporina/química , Flavonoides/química , Glucuronosiltransferasa/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas , Sistema de Señalización de MAP Quinasas , Fosfoproteínas/metabolismo , Fosforilación
5.
PLoS One ; 8(8): e72369, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977290

RESUMEN

Neurons synthesizing neurokinin B (NKB) and kisspeptin (KP) in the hypothalamic arcuate nucleus represent important upstream regulators of pulsatile gonadotropin-releasing hormone (GnRH) neurosecretion. In search of neuropeptides co-expressed in analogous neurons of the human infundibular nucleus (Inf), we have carried out immunohistochemical studies of the tachykinin peptide Substance P (SP) in autopsy samples from men (21-78 years) and postmenopausal (53-83 years) women. Significantly higher numbers of SP-immunoreactive (IR) neurons and darker labeling were observed in the Inf of postmenopausal women than in age-matched men. Triple-immunofluorescent studies localized SP immunoreactivity to considerable subsets of KP-IR and NKB-IR axons and perikarya in the infundibular region. In postmenopausal women, 25.1% of NKB-IR and 30.6% of KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled. Triple-, double- and single-labeled SP-IR axons innervated densely the portal capillaries of the infundibular stalk. In quadruple-labeled sections, these axons formed occasional contacts with GnRH-IR axons. Presence of SP in NKB and KP neurons increases the functional complexity of the putative pulse generator network. First, it is possible that SP modulates the effects of KP and NKB in axo-somatic and axo-dendritic afferents to GnRH neurons. Intrinsic SP may also affect the activity and/or neuropeptide release of NKB and KP neurons via autocrine/paracrine actions. In the infundibular stalk, SP may influence the KP and NKB secretory output via additional autocrine/paracrine mechanisms or regulate GnRH neurosecretion directly. Finally, possible co-release of SP with KP and NKB into the portal circulation could underlie further actions on adenohypophysial gonadotrophs.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Sustancia P/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Núcleo Arqueado del Hipotálamo/citología , Axones/metabolismo , Capilares/metabolismo , Cuerpo Celular/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Kisspeptinas/análisis , Masculino , Persona de Mediana Edad , Neuroquinina B/análisis , Hipófisis/irrigación sanguínea , Hipófisis/metabolismo , Transporte de Proteínas , Sustancia P/análisis , Adulto Joven
6.
Endocrinology ; 153(11): 5428-39, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23011920

RESUMEN

Peptidergic neurons synthesizing kisspeptin (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus have been implicated in negative sex steroid feedback to GnRH neurons. In laboratory rodents, testosterone decreases KP and NKB expression in this region. In the present study, we addressed the hypothesis that the weakening of this inhibitory testosterone feedback in elderly men coincides with enhanced KP and NKB signaling in the infundibular nucleus. This central hypothesis was tested in a series of immunohistochemical studies on hypothalamic sections of male human individuals that were divided into arbitrary "young" (21-49 yr, n = 11) and "aged" (50-67 yr, n = 9) groups. Quantitative immunohistochemical experiments established that the regional densities of NKB-immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, exceeded several times those of the KP-IR elements. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers and the incidence of afferent contacts they established onto GnRH neurons. The abundance of NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, albeit to lower extents. In dual-immunofluorescent studies, the incidence of KP-IR NKB perikarya increased from 36% in young to 68% in aged men. Collectively, these immunohistochemical data suggest an aging-related robust enhancement in central KP signaling and a moderate enhancement in central NKB signaling. These changes are compatible with a reduced testosterone negative feedback to KP and NKB neurons. The heavier KP and NKB inputs to GnRH neurons in aged, compared with young, men may play a role in the enhanced central stimulation of the reproductive axis. It requires clarification to what extent the enhanced KP and NKB signaling upstream from GnRH neurons is an adaptive response to hypogonadism or, alternatively, a consequence of a decline in the androgen sensitivity of KP and NKB neurons.


Asunto(s)
Envejecimiento/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Adulto , Anciano , Axones/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Persona de Mediana Edad , Testosterona/metabolismo
7.
Endocrinology ; 153(6): 2766-76, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22510271

RESUMEN

Amino acid (aa) neurotransmitters in synaptic afferents to hypothalamic GnRH-I neurons are critically involved in the neuroendocrine control of reproduction. Although in rodents the major aa neurotransmitter in these afferents is γ-aminobutyric acid (GABA), glutamatergic axons also innervate GnRH neurons directly. Our aim with the present study was to address the relative contribution of GABAergic and glutamatergic axons to the afferent control of human GnRH neurons. Formalin-fixed hypothalamic samples were obtained from adult male individuals (n = 8) at autopsies, and their coronal sections processed for dual-label immunohistochemical studies. GABAergic axons were labeled with vesicular inhibitory aa transporter antibodies, whereas glutamatergic axons were detected with antisera against the major vesicular glutamate transporter (VGLUT) isoforms, VGLUT1 and VGLUT2. The relative incidences of GABAergic and glutamatergic axonal appositions to GnRH-immunoreactive neurons were compared quantitatively in two regions, the infundibular and paraventricular nuclei. Results showed that GABAergic axons established the most frequently encountered type of axo-somatic apposition. Glutamatergic contacts occurred in significantly lower numbers, with similar contributions by their VGLUT1 and VGLUT2 subclasses. The innervation pattern was different on GnRH dendrites where the combined incidence of glutamatergic (VGLUT1 + VGLUT2) contacts slightly exceeded that of the GABAergic appositions. We conclude that GABA represents the major aa neurotransmitter in axo-somatic afferents to human GnRH neurons, whereas glutamatergic inputs occur somewhat more frequently than GABAergic inputs on GnRH dendrites. Unlike in rats, the GnRH system of the human receives innervation from the VGLUT1, in addition to the VGLUT2, subclass of glutamatergic neurons.


Asunto(s)
Axones/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Adulto , Anciano , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Autopsia , Axones/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Glutamatos/metabolismo , Humanos , Inmunohistoquímica/métodos , Masculino , Microscopía Confocal , Persona de Mediana Edad , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Transmisión Sináptica/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA