RESUMEN
We report the case of long-term persisting rheumatoid arthritis (RA), treated with CD20-CD19 CAR-T when it became associated with diffuse large B cell lymphoma (DLBCL), resulting in a sustained drug-free remission of the preceding RA, as well as of the subsequent DLBCL that formed the indication of the CAR-T therapy using zamtocabtagene autoleucel, with a 1-year follow-up. According to our best knowledge, this is the first published clinical case report of long-term persisting RA treated with CAR-T cell therapy.
Asunto(s)
Antígenos CD19 , Antígenos CD20 , Artritis Reumatoide , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/diagnóstico , Artritis Reumatoide/terapia , Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD20/inmunología , Resultado del Tratamiento , Inducción de Remisión , Persona de Mediana Edad , Femenino , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , MasculinoRESUMEN
Thromboinflammation/immunothrombosis plays a role in several diseases including thrombotic thrombocytopenic purpura (TTP) and COVID-19. Unlike the extensive research that has been conducted on COVID-19 cytokine storms, the baseline and acute phase cytokine profiles of TTP are poorly characterized. Moreover, we compared the cytokine profiles of TTP and COVID-19 to identify the disease-specific/general characteristics of thromboinflammation/immunothrombosis. Plasma concentrations of 33 soluble mediators (SMs: cytokines, chemokines, soluble receptors, and growth factors) were measured by multiplex bead-based LEGENDplex™ immunoassay from 32 COVID-19 patients (32 non-vaccinated patients in three severity groups), 32 TTP patients (remission/acute phase pairs of 16 patients), and 15 control samples. Mainly, the levels of innate immunity-related SMs changed in both diseases. In TTP, ten SMs decreased in both remission and acute phases compared to the control, one decreased, and two increased only in the acute phase compared to remission, indicating mostly anti-inflammatory changes. In COVID-19, ten pro-inflammatory SMs increased, whereas one decreased with increasing severity compared to the control. In severe COVID-19, sixteen SMs exceeded acute TTP levels, with only one higher in TTP. PCA identified CXCL10, IL-1RA, and VEGF as the main discriminators among their cytokine profiles. The innate immune response is altered in both diseases. The cytokine profile of TTP suggests a distinct pathomechanism from COVID-19 and supports referring to TTP as thromboinflammatory rather than immunothrombotic, emphasizing thrombosis over inflammation as the driving force of the acute phase.
Asunto(s)
COVID-19 , Citocinas , Púrpura Trombocitopénica Trombótica , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/inmunología , Citocinas/sangre , Púrpura Trombocitopénica Trombótica/sangre , Púrpura Trombocitopénica Trombótica/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , SARS-CoV-2/inmunología , Anciano , Inmunidad Innata , Inflamación/sangreRESUMEN
The COVID-19 pandemic has exacerbated mortality rates among immunocompromised patients, accentuating the need for novel, targeted therapies. Transplant recipients, with their inherent immune vulnerabilities, represent a subgroup at significantly heightened risk. Current conventional therapies often demonstrate limited effectiveness in these patients, calling for innovative treatment approaches. In immunocompromised transplant recipients, several viral infections have been successfully treated by adoptive transfer of virus-specific T-cells (VST). This paper details the successful application of SARS-CoV-2-specific memory T-cell therapy, produced by an interferon-γ cytokine capture system (CliniMACS® Prodigy device), in three stem cell transplant recipients diagnosed with COVID-19 (case 1: alpha variant, cases 2 and 3: delta variants). These patients exhibited persistent SARS-CoV-2 PCR positivity accompanied by bilateral pulmonary infiltrates and demonstrated only partial response to standard treatments. Remarkably, all three patients recovered and achieved viral clearance within 3 to 9 weeks post-VST treatment. Laboratory follow-up investigations identified an increase in SARS-CoV-2-specific T-cells in two of the cases. A robust anti-SARS-CoV-2 S (S1/S2) IgG serological response was also recorded, albeit with varying titers. The induction of memory T-cells within the CD4 + compartment was confirmed, and previously elevated interleukin-6 (IL-6) and IL-8 levels normalized post-VST therapy. The treatment was well tolerated with no observed adverse effects. While the need for specialized equipment and costs associated with VST therapy present potential challenges, the limited treatment options currently available for COVID-19 within the allogeneic stem cell transplant population, combined with the risk posed by emerging SARS-CoV-2 mutations, underscore the potential of VST therapy in future clinical practice. This therapeutic approach may be particularly beneficial for elderly patients with multiple comorbidities and weakened immune systems.
Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Anciano , Humanos , SARS-CoV-2 , Pandemias , Receptores de Trasplantes , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Background: The optimal approach for adult patients hospitalized with severe and critical coronavirus disease 2019 (COVID-19), non-responsive to antiviral and immunomodulatory drugs, is not well established. Our aim was to evaluate feasibility and safety of extracorporeal photopheresis (ECP) in this setting. Methods: A prospective, single-center investigational study was performed between 2021 and 2022 at a tertiary referral center for COVID-19. Patients diagnosed with COVID-19 were screened, and cases with severe or critical disease fulfilling pre-defined clinical and biochemical criteria of non-response for >5 days, despite remdesivir, dexamethasone and immunomodulation (tocilizumab, baricitinib, ruxolitinib), were consecutively enrolled. After patient inclusion, two ECP sessions on two consecutive days per week for 2 weeks were applied. Patients were followed-up per protocol from study inclusion, and clinical, virological and radiological outcomes were assessed at the end of treatment (EOT) +28 days. Results: A total of seven patients were enrolled. At inclusion, four out of seven (57.1%) were admitted to the ICU, all patients had ongoing cytokine storm. Additionally, 3/7 (42.9%) had radiological progression on chest CT. At EOT+28 days, 2/7 (28.6%) patients died due to non-ECP-related causes. Among the survivors, no additional requirement for intensive care unit admission or radiological progression was observed, and invasive mechanical ventilation could be weaned off in 1/5 (20.0%). All patients achieved whole-blood SARS-CoV-2 RNAemia clearance, while 3/7 (42.9%) no longer showed detectable respiratory SARS-CoV-2 RNA. According to immune biomarker profiling, ECP mainly facilitated a decrease in plasma IL-6 and IL-17A levels, as well as the physiological regeneration of peripheral blood immunocyte subpopulations, notably CD8+/CD45RO+ memory T-cells. No safety signals were identified. Conclusions: ECP appears to be a safe and feasible option for adults hospitalized with severe or critical COVID-19 who do not respond to pharmacological interventions. Further trial data are warranted to assess its optimal use. Trial registration: ClinicalTrials.gov NCT05882331 (retrospectively registered).
RESUMEN
Despite novel immunosuppressive (IS) protocols, adverse effects of IS drugs continue to have notable negative impact on patient and cardiac allograft survival after heart transplantation (HTx). Therefore, IS regimens with less toxic side effects are sorely needed. We aimed to evaluate the efficacy of extracorporeal photopheresis (ECP) in combination with tacrolimus-based maintenance IS therapy in the treatment of allograft rejection in adult HTx recipients. Indications for ECP included acute moderate-to-severe or persistent mild cellular rejection, or mixed rejection. Twenty-two patients underwent a median of 22(2-44) ECP treatments after HTx. Median duration of ECP course was 173.5(2-466) days. No relevant adverse effects of ECP were noted. Reduction of methylprednisolone doses was safe throughout the ECP course. ECP, used in conjunction with pharmacological anti-rejection therapy, had a successful reversal of cardiac allograft rejection, decreased the rates of subsequential rejection episodes and normalized the allograft function in patients completing the ECP course. Short- and long-term survivals were excellent (91% at 1 and 5 years post-ECP) and comparable to International Society for Heart and Lung Transplantation registry data on HTx recipient overall survival. In conclusion, ECP can be safely used for the treatment and prevention of cardiac allograft rejection in conjunction with traditional IS regimen.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Trasplante de Corazón , Fotoféresis , Adulto , Humanos , Fotoféresis/métodos , Rechazo de Injerto/prevención & control , Trasplante Homólogo , Inmunosupresores/uso terapéutico , AloinjertosRESUMEN
Introduction: While complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood. Methods: We therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome. Results: We show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID. Conclusion: In conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted.
Asunto(s)
COVID-19 , Lectina de Unión a Manosa , Humanos , Síndrome Post Agudo de COVID-19 , COVID-19/genética , SARS-CoV-2 , Genotipo , Lectinas , Gravedad del Paciente , Lectina de Unión a Manosa/genéticaRESUMEN
BACKGROUND: For the past 30 years, white blood cell depletion (WBCD) or leukocytapheresis has been conducted to rapidly reduce excessive circulating white blood cell (WBC) concentrations in patients at risk for or with symptoms of leukostasis due to hyperleukocytosis. The goal of leukocytapheresis is to prevent or treat acute complications from leukostasis, thereby enabling patients to receive potentially curative chemotherapy. METHODS: This report details the results from a retrospective and a prospective clinical study conducted in the European Union and the People's Republic of China, which assessed the use of the Spectra Optia Apheresis System for leukocytapheresis in patients with hyperleukocytosis. The primary objective of both studies was to the assess the safety and performance of the WBCD procedure in patients with elevated WBC counts. RESULTS: Data were collected from 72 participants completing 87 WBCD procedures. The mean percent change in participant WBC counts post-procedure was 50.3 ± 21.2% and the collection efficiency (CE1) of the WBCD procedures was 53.7 ± 19.8%. Sixty-one participants (95.3%) experienced a total of 279 adverse events (AEs) with the majority of the AEs related to post-procedure changes in laboratory values, which is an anticipated AE in this patient population. CONCLUSION: The data collected within these studies indicate that the WBCD procedure is safe and well tolerated in patients with hyperleukocytosis as evaluated by percent decrease in WBC count, CE1, and AE incidence.
Asunto(s)
Leucostasis , Humanos , Leucostasis/terapia , Estudios Retrospectivos , Estudios Prospectivos , Leucocitos , Leucaféresis/métodos , Recuento de LeucocitosRESUMEN
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Asunto(s)
Sueroterapia para COVID-19 , COVID-19 , Anciano , Humanos , Persona de Mediana Edad , COVID-19/epidemiología , COVID-19/terapia , Sueroterapia para COVID-19/efectos adversos , Hungría/epidemiología , Estudios Prospectivos , Adulto , Ensayos Clínicos Controlados Aleatorios como Asunto , Pandemias , Hospitalización , Resultado del TratamientoRESUMEN
Background: Dysregulation of complement system is thought to be a major player in development of multi-organ damage and adverse outcomes in patients with coronavirus disease 2019 (COVID-19). This study aimed to examine associations between complement system activity and development of severe acute kidney injury (AKI) among hospitalized COVID-19 patients. Materials and Methods: In this multicenter, international study, complement as well as inflammatory and thrombotic parameters were analyzed in COVID-19 patients requiring hospitalization at one US and two Hungarian centers. The primary endpoint was development of severe AKI defined by KDIGO stage 2+3 criteria, while the secondary endpoint was need for renal replacement therapy (RRT). Complement markers with significant associations with endpoints were then correlated with a panel of inflammatory and thrombotic biomarkers and assessed for independent association with outcome measures using logistic regression. Results: A total of 131 hospitalized COVID-19 patients (median age 66 [IQR, 54-75] years; 54.2% males) were enrolled, 33 from the US, and 98 from Hungary. There was a greater prevalence of complement over-activation and consumption in those who developed severe AKI and need for RRT during hospitalization. C3a/C3 ratio was increased in groups developing severe AKI (3.29 vs. 1.71; p < 0.001) and requiring RRT (3.42 vs. 1.79; p < 0.001) in each cohort. Decrease in alternative and classical pathway activity, and consumption of C4 below reference range, as well as elevation of complement activation marker C3a above the normal was more common in patients progressing to severe AKI. In the Hungarian cohort, each standard deviation increase in C3a (SD = 210.1) was independently associated with 89.7% increased odds of developing severe AKI (95% CI, 7.6-234.5%). Complement was extensively correlated with an array of inflammatory biomarkers and a prothrombotic state. Conclusion: Consumption and dysregulation of complement system is associated with development of severe AKI in COVID-19 patients and could represent a promising therapeutic target for reducing thrombotic microangiopathy in SARS-CoV-2 infection.
RESUMEN
Coronavirus disease 2019 (COVID-19) displays tremendous inter-individual variability, ranging from asymptomatic infections to life-threatening illness. Although more studies are needed, a picture has begun to emerge that variability in the immune system components is a main contributor to the heterogeneous disease courses. Here, we provide a concept for the interaction of the innate and adaptive immune systems with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to link the observations that have been made during the first two years of the pandemic. Inborn errors of, and autoantibodies directed against, type I interferons, dysregulated myeloid response, hyperinflammation, lymphopenia, lymphocyte impairment, and heterogeneous adaptive immunity to SARS-CoV-2 are discussed, as well as their impact in the course of COVID-19. In addition, we will also review part of the key findings that have helped define and delineate some of the essential attributes of SARS-CoV-2-specific humoral and cell -mediated immune memory.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , PandemiasRESUMEN
Aim: To investigate the serum circulating DPP4 activity in patients with COVID-19 disease. Materials & methods: Serum samples from 102 hospitalized COVID-19 patients and 43 post-COVID-19 plasma donors and 39 SARS-CoV-2 naive controls and their medical data were used. Circulating DPP4 activities according to different COVID-19 disease peak severity (WHO) groups at sampling and at peak were assessed. Results: A significant decrease (p < 0.0001) in serum DPP4 activity was found in study groups of higher disease severity. When the circulating DPP4 activity was assessed as a prognostic marker, the logistic regression (p = 0.0023) indicated that the enzyme activity is a predictor of mortality (median 9.5 days before death) with receiver operating characteristic area under the curves of 73.33% (p[area = 0.5] < 0.0001) as single predictor and 83.45% (p[area = 0.5] < 0.0001) in combination with age among hospitalized patients with COVID-19. Conclusion: Decreased circulating DPP4 activity is associated with severe COVID-19 disease and is a strong prognostic biomarker of mortality.
Asunto(s)
Biomarcadores/sangre , COVID-19/sangre , Dipeptidil Peptidasa 4/sangre , Pacientes Internos/estadística & datos numéricos , Adulto , Anciano , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , COVID-19/diagnóstico , COVID-19/terapia , Dipeptidil Peptidasa 4/metabolismo , Femenino , Humanos , Interleucina-6/sangre , Interleucina-6/metabolismo , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Curva ROC , Estudios Retrospectivos , SARS-CoV-2/fisiología , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Endothelial and complement activation were both associated with immunothrombosis, a key determinant of COVID-19 severity, but their interrelation has not yet been investigated. OBJECTIVES: We aimed to determine von Willebrand factor (VWF) antigen (VWF:Ag) concentration, VWF collagen binding activity (VWF:CBA), a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity (ADAMTS13:Ac), and their ratios in hospitalized COVID-19 patients, and to investigate how these parameters and their constellation with complement activation relate to disease severity and in-hospital mortality in COVID-19. METHODS: Samples of 102 hospitalized patients with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 positivity were included in our observational cohort study. Patients were stratified according to the peak severity of COVID-19 disease in agreement with the World Health Organization ordinal scale. Twenty-six convalescent plasma donors with previous COVID-19 disease formed the control group. VWF:Ag concentration and VWF:CBA were determined by enzyme-linked immunosorbent assay (ELISA); ADAMTS13:Ac was determined by fluorescence resonance energy transfer. Complement C3 and C3a were measured by turbidimetry and ELISA, respectively. Clinical covariates and markers of inflammation were extracted from hospital records. RESULTS: VWF:Ag and VWF:CBA were elevated in all groups of hospitalized COVID-19 patients and increased in parallel with disease severity. ADAMTS13:Ac was decreased in patients with severe COVID-19, with the lowest values in nonsurvivors. High (> 300%) VWF:Ag concentrations or decreased (< 67%) ADAMTS13:Ac were associated with higher risk of severe COVID-19 disease or in-hospital mortality. The concomitant presence of decreased ADAMTS13:Ac and increased C3a/C3 ratio-indicating complement overactivation and consumption-was a strong independent predictor of in-hospital mortality. CONCLUSION: Our results suggest that an interaction between the VWF-ADAMTS13 axis and complement overactivation and consumption plays an important role in the pathogenesis of COVID-19.
Asunto(s)
Proteína ADAMTS13/metabolismo , COVID-19/inmunología , Complemento C3/metabolismo , SARS-CoV-2/fisiología , Factor de von Willebrand/metabolismo , Adulto , Anciano , COVID-19/epidemiología , COVID-19/mortalidad , Activación de Complemento , Convalecencia , Femenino , Hospitalización , Humanos , Hungría/epidemiología , Masculino , Persona de Mediana Edad , Nefelometría y Turbidimetría , Índice de Severidad de la Enfermedad , Análisis de SupervivenciaRESUMEN
Allogeneic hematopoietic stem cell transplantation (HSCT) and coronavirus disease 2019 (COVID-19) infection can both lead to severe cytokine release syndrome (sCRS) resulting in critical illness and death. In this single institution, preliminary comparative case-series study we compared clinical and laboratory co-variates as well as response to tocilizumab (TCZ)-based therapy of 15 allogeneic-HSCT- and 17 COVID-19-associated sCRS patients. Reaction to a TCZ plus posttransplant cyclophosphamide (PTCY) consolidation therapy in the allogeneic-HSCT-associated sCRS group yielded significantly inferior long-term outcome as compared to TCZ-based therapy in the COVID-19-associated group (P = 0.003). We report that a TCZ followed by consolidation therapy with a Janus kinase/signal transducer and activator of transcription (JAK/STAT) inhibitor given to 4 out of 8 critically ill COVID-19 patients resulted in their complete recovery. Non-selective JAK/STAT inhibitors influencing the action of several cytokines exhibit a broader effect than TCZ alone in calming down sCRS. Serum levels of cytokines and chemokines show similar changes in allogeneic-HSCT- and COVID-19-associated sCRS with marked elevation of interleukin-6 (IL-6), regulated upon activation normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein-1 (MCP-1) and interferon γ-induced protein 10 kDa (IP-10) levels. In addition, levels of IL-5, IL-10, IL-15 were also elevated in allogeneic-HSCT-associated sCRS. Our multi-cytokine expression data indicate that the pathophysiology of allogeneic-HSCT and COVID-19-associated sCRS are similar therefore the same clinical grading system and TCZ-based treatment approaches can be applied. TCZ with JAK/STAT inhibitor consolidation therapy might be highly effective in COVID-19 sCRS patients.
RESUMEN
In the present study, humoral and T cell-mediated immune responses elicited by BBIBP-CorV (inactivated virus) and BNT162b2 (mRNA-based) vaccines against SARS-CoV-2 virus were compared. Convalescent volunteers were also investigated to evaluate adaptive immunity induced by live virus. Although both vaccines induced antibody- and T cell-mediated immune responses, our analysis revealed significant quantitative and qualitative differences between the two types of challenges. The BBIBP-CorV vaccine elicited antireceptor-binding domain (RBD) IgG, as well as anti-spike protein (S) IgG and IgA antibodies in healthy individuals, the levels of which were much lower than after BNT162b2 vaccination but still higher than in the convalescent patients. The cumulative IFNγ-positive T cell response, however, was only twofold higher in participants injected with BNT162b2 compared to those who were primed and boosted with BBIBP-CorV vaccine. Moreover, the inactivated virus vaccine induced T cell response that targets not only the S but also the nucleocapsid (N) and membrane (M) proteins, whereas the mRNA vaccine was able to elicit a much narrower response that targets the S protein epitopes only. Thus, the pattern of BBIBP-CorV-induced T cell response in virus-naive participants was similar to the cell-mediated anti-SARS-CoV-2 response observed in convalescent patients. Based on these data, we can conclude that the BBIBP-CorV inactivated virus vaccine is immunologically effective. However, the duration of BBIBP-CorV-induced integrated, antibody, and T cell-mediated, immune responses needs further investigation.
Asunto(s)
COVID-19 , Vacunas , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Linfocitos TRESUMEN
Anti-A Disintegrin and Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) autoantibodies cause a severe ADAMTS13 deficiency in immune-mediated thrombotic thrombocytopenic purpura (iTTP). ADAMTS13 consists of a metalloprotease (M), a disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). We recently developed a high-throughput epitope mapping assay based on small, nonoverlapping ADAMTS13 fragments (M, DT, CS, T2-T5, T6-T8, CUB1-2). With this assay, we performed a comprehensive epitope mapping using 131 acute-phase samples and for the first time a large group of remission samples (n = 50). Next, samples were stratified according to their immunoprofiles, a field that is largely unexplored in iTTP. Three dominant immunoprofiles were found in acute-phase samples: profile 1: only anti-CS autoantibodies (26.7%); profile 2: both anti-CS and anti-CUB1-2 autoantibodies (12.2%); and profile 3: anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, and anti-CUB1-2 autoantibodies (8.4%). Interestingly, profile 1 was the only dominant immunoprofile in remission samples (52.0%). Clinical data were available for a relatively small number of patients with acute iTTP (>68), and no correlation was found between immunoprofiles and disease severity. Nevertheless, profile 1 was linked with younger and anti-T2-T5 autoantibodies with older age and the absence of anti-CUB1-2 autoantibodies with cerebral involvement. In conclusion, identifying acute phase and remission immunoprofiles in iTTP revealed that anti-CS autoantibodies seem to persist or reappear during remission providing further support for the clinical development of a targeted anti-CS autoantibody therapy. A large cohort study with acute iTTP samples will validate possible links between immunoprofiles or anti-domain autoantibodies and clinical data.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Anciano , Autoanticuerpos , Estudios de Cohortes , Humanos , Trombospondina 1RESUMEN
Objectives: Uncontrolled thromboinflammation plays an important role in the pathogenesis of coronavirus disease (COVID-19) caused by SARS-CoV-2 virus. Complement was implicated as key contributor to this process, therefore we hypothesized that markers of the complement profile, indicative for the activation state of the system, may be related to the severity and mortality of COVID-19. Methods: In this prospective cohort study samples of 102 hospitalized and 26 outpatients with PCR-confirmed COVID-19 were analyzed. Primary outcome was in-hospital, COVID-19 related mortality, and secondary outcome was COVID-19 severity as assessed by the WHO ordinal scale. Complement activity of alternative and classical pathways, its factors, regulators, and activation products were measured by hemolytic titration, turbidimetry, or enzyme-immunoassays. Clinical covariates and markers of inflammation were extracted from hospital records. Results: Increased complement activation was characteristic for hospitalized COVID-19 patients. Complement activation was significantly associated with markers of inflammation, such as interleukin-6, C-reactive protein, and ferritin. Twenty-five patients died during hospital stay due to COVID-19 related illness. Patients with uncontrolled complement activation leading to consumption of C3 and decrease of complement activity were more likely to die, than those who had complement activation without consumption. Cox models identified anaphylatoxin C3a, and C3 overactivation and consumption (ratio of C3a/C3) as predictors of in-hospital mortality [HR of 3.63 (1.55-8.45, 95% CI) and 6.1 (2.1-17.8), respectively]. Conclusion: Increased complement activation is associated with advanced disease severity of COVID-19. Patients with SARS-CoV-2 infection are more likely to die when the disease is accompanied by overactivation and consumption of C3. These results may provide observational evidence and further support to studies on complement inhibitory drugs for the treatment of COVID-19.
Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Activación de Complemento/inmunología , Complemento C3a/inmunología , Mortalidad Hospitalaria , SARS-CoV-2/inmunología , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Tasa de SupervivenciaRESUMEN
BACKGROUND: Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by anti-ADAMTS13 autoantibodies inducing a severe deficiency of ADAMTS13. Epitope mapping studies on samples obtained during acute iTTP episodes have shown that the iTTP immune response is polyclonal, with almost all patients having autoantibodies targeting the spacer domain of ADAMTS13. OBJECTIVES: To identify the immunogenic hotspots in the spacer domain of ADAMTS13. PATIENTS/METHODS: A library of 11 full-length ADAMTS13 spacer hybrids was created in which amino acid regions of the spacer domain of ADAMTS13 were exchanged by the corresponding region of the spacer domain of ADAMTS1. Next, the full-length ADAMTS13 spacer hybrids were used in enzyme-linked immunosorbent assay to epitope map anti-spacer autoantibodies in 138 samples from acute and remission iTTP patients. RESULTS: Sixteen different anti-spacer autoantibody profiles were identified with a similar distribution in acute and remission patients. There was no association between the anti-spacer autoantibody profiles and disease severity. Almost all iTTP samples contained anti-spacer autoantibodies against the following three regions: amino acid residues 588-592, 602-610, and 657-666 (hybrids E, G, and M). Between 31% and 57% of the samples had anti-spacer autoantibodies against amino acid regions 572-579, 629-638, 667-676 (hybrids C, J, and N). In contrast, none of the samples had anti-spacer autoantibodies against amino acid regions 556-563, 564-571, 649-656, and 677-685 (hybrids A, B, L, and O). CONCLUSION: We identified three hotspot regions (amino acid regions 588-592, 602-610, and 657-666) in the spacer domain of ADAMTS13 that are targeted by anti-spacer autoantibodies found in a large cohort of iTTP patients.
Asunto(s)
Proteína ADAMTS13/inmunología , Autoanticuerpos/inmunología , Púrpura Trombocitopénica Trombótica , ADN Intergénico , Epítopos , Humanos , Inmunoglobulina G , Púrpura Trombocitopénica Trombótica/diagnósticoRESUMEN
INTRODUCTION: At present, neither specific curative treatment nor vaccines for novel coronavirus 2019 (COVID-19) are available. There is an urgent need to look for alternative strategies for COVID-19 treatment especially in the case of severe and/or critically ill patients with cytokine release syndrome (CRS). AIM: Convalescent plasma proved to increase survival rates in other severe viral infections. Therefore, convalescent plasma could be a promising treatment option for severe COVID-19 patients. METHOD: In our article, we present the first two critically ill Hungarian patients with COVID-19 infection treated with convalescent fresh frozen plasma. RESULTS: At the time of plasma therapy both patients were on mechanical ventilation and received antiviral agents and a full scale of supportive care. Each patient received 3 × 200 mL of convalescent plasma of recently recovered donors with sufficient novel anti-coronavirus IgG titers. Subsequent to convalescent plasma infusion, oxygenization improved and inflammatory markers decreased in both individuals. As compared to pretransfusion, lymphocyte counts increased and interleukin-6 level lessened. Both patients were weaned from mechanical ventilation within 2 weeks of treatment. No severe adverse effects were observed. CONCLUSIONS: Our experience indicates that convalescent plasma therapy is well tolerated and could potentially improve clinical outcomes. Optimal dose and timing as well as precise assessment of clinical benefit of convalescent plasma therapy will need further investigation in larger, well-controlled trials. This is the first report of the successful use of convalescent plasma in the treatment of critically ill patients with COVID-19 infection in Hungary. Orv Hetil. 2020; 161(27): 1111-1121.
Asunto(s)
Infecciones por Coronavirus/terapia , Neumonía Viral/terapia , COVID-19 , Enfermedad Crítica , Humanos , Hungría , Inmunización Pasiva , Pandemias , Resultado del Tratamiento , Sueroterapia para COVID-19RESUMEN
Recently, we showed that ADAMTS13 circulates in an open conformation during the acute phase of immune-mediated thrombotic thrombocytopenic purpura (iTTP). Although the cause of this conformational change remains elusive, ADAMTS13 is primarily closed in iTTP patients in remission with ADAMTS13 activity >50% and undetectable anti-ADAMTS13 autoantibodies, as well as after rituximab treatment, suggesting a role for anti-ADAMTS13 autoantibodies. Therefore, immunoglobulin G from 18 acute iTTP patients was purified and added to closed ADAMTS13 in healthy donor plasma. This resulted in open ADAMTS13 in 14 of 18 (78%) samples, proving that anti-ADAMTS13 autoantibodies can induce an open ADAMTS13 conformation. To further elucidate the conformation of ADAMTS13 in iTTP patients, we studied a novel iTTP patient cohort (n = 197) that also included plasma samples from iTTP patients in remission in whom ADAMTS13 activity was <50%. The open ADAMTS13 conformation was found during acute iTTP, as well as in patients in remission with ADAMTS13 activity <50% and in half of the patients with ADAMTS13 activity >50%, although free anti-ADAMTS13 autoantibodies were not always detected. Thus, open ADAMTS13 is a hallmark of acute iTTP, as well as a novel biomarker that can be used to detect subclinical iTTP in patients in remission. Finally, a long-term follow-up study in 1 iTTP patient showed that the open conformation precedes a substantial drop in ADAMTS13 activity. In conclusion, we have shown that anti-ADAMTS13 autoantibodies from iTTP patients induce an open ADAMTS13 conformation. Most importantly, an open ADAMTS13 conformation is a biomarker for subclinical iTTP and could become an important tool in TTP management.
Asunto(s)
Proteína ADAMTS13/sangre , Autoanticuerpos/sangre , Púrpura Trombocitopénica Idiopática/sangre , Biomarcadores/sangre , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Conformación Proteica , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Rituximab/administración & dosificaciónRESUMEN
The Bruton tyrosine kinase (BTK) inhibitor ibrutinib provides effective treatment for patients with chronic lymphocytic leukemia (CLL), despite extensive heterogeneity in this disease. To define the underlining regulatory dynamics, we analyze high-resolution time courses of ibrutinib treatment in patients with CLL, combining immune-phenotyping, single-cell transcriptome profiling, and chromatin mapping. We identify a consistent regulatory program starting with a sharp decrease of NF-κB binding in CLL cells, which is followed by reduced activity of lineage-defining transcription factors, erosion of CLL cell identity, and acquisition of a quiescence-like gene signature. We observe patient-to-patient variation in the speed of execution of this program, which we exploit to predict patient-specific dynamics in the response to ibrutinib based on the pre-treatment patient samples. In aggregate, our study describes time-dependent cellular, molecular, and regulatory effects for therapeutic inhibition of B cell receptor signaling in CLL, and it establishes a broadly applicable method for epigenome/transcriptome-based treatment monitoring.