Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(44): 30649-30664, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37859779

RESUMEN

In this work, the xylose conversion and the selectivity to furfural were assessed over mesoporous sulfonic silica SBA-15-(X)SO3H catalysts doped with metal ions (X = Al(iii), Ti(iv) or Zr(iv)). The type and amount of acid sites were analyzed by adsorption of pivalonitrile. The SBA-15-(X)SO3H materials show Lewis acid sites (LAS) and two types of Brønsted acid sites (BAS) with different strengths. Type I (BAS I) belongs to terminal silanol groups, type II (BAS II) is ascribed to hydroxyl groups bonded to sulfur or transition metal, and the LAS is related to M-O bonds. Optimal reaction conditions for the most active catalyst (SBA-15-(Zr)SO3H) were 120 minutes of reaction at 160 °C, 20 wt% of catalyst, and 2.5% of xylose/solvent. Additionally, a kinetic study was carried out to calculate the rate constants, the activation energy, and the pre-exponential factor for the xylose dehydration reaction. It was found that the selectivity to furfural in sulfonic silica SBA-15-(X)SO3H catalysts was directly related to the BAS II fraction. While LAS negatively impacts the selectivity to furfural leading to the undesired reaction between furfural and xylose obtaining humins as secondary products.

2.
Bioresour Technol ; 369: 128469, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509309

RESUMEN

The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.


Asunto(s)
Vapor , Agua , Biomasa , Análisis Costo-Beneficio , Biocombustibles , Lignina
3.
Molecules ; 26(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34885874

RESUMEN

Agave lechuguilla agro-waste is a promising renewable material for biorefining purposes. The procurement of added-value co-products, such as bioactive phytochemicals, is required to improve bioprocesses and promote the bio-based economy of the productive areas of Mexico. In this study, we aimed to evaluate the effect of post-harvest management and enzymatic pretreatment as the first stages of the A. lechuguilla valorization process. Four drying methods were compared, and enzymatic hydrolysis was optimized to obtain a flavonoid-enriched extract applying ultrasound-assisted extraction. In both experiments, the total phenolic (TPC) and flavonoid (TFC) contents, HPLC-UV flavonoid profiles, and radical scavenging capacity (DPPH) were considered as response variables. The results demonstrated that light exposure during the drying process particularly affected the flavonoid content, whereas oven-dehydration at 40 °C in the dark preserved the flavonoid diversity and antioxidant functionality of the extracts. Flavonoid glycoside recovery, particularly anthocyanidins, was 1.5-1.4-fold enhanced by enzymatic hydrolysis using the commercial mix Ultraflo© under optimized conditions (pH 4, 40 °C, 180 rpm, and 2.5 h) compared to the unpretreated biomass. The extraction of flavonoids from A. lechuguilla bagasse can be carried out using a scalable drying method and enzymatic pretreatment. This study confirmed the potential of this agro-waste as a source of marketable natural products.


Asunto(s)
Agave/química , Celulosa/química , Flavonoides/aislamiento & purificación , Extractos Vegetales/química , Desecación , Hidrólisis
4.
Plants (Basel) ; 10(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916866

RESUMEN

Agave lechuguilla waste biomass (guishe) is an undervalued abundant plant material with natural active compounds such as flavonoids. Hence, the search and conservation of flavonoids through the different productive areas have to be studied to promote the use of this agro-residue for industrial purposes. In this work, we compared the proportion of total flavonoid content (TFC) among the total polyphenolics (TPC) and described the variation of specific flavonoid profiles (HPLC-UV-MS/MS) of guishe from three locations. Descriptive environmental analysis, using remote sensing, was used to understand the phytochemical variability among the productive regions. Furthermore, the effect of extractive solvent (ethanol and methanol) and storage conditions on specific flavonoid recovery were evaluated. The highest TPC (16.46 ± 1.09 GAE/g) was observed in the guishe from region 1, which also had a lower normalized difference water index (NDWI) and lower normalized difference vegetation index (NDVI). In contrast, the TFC was similar in the agro-residue from the three studied areas, suggesting that TFC is not affected by the studied environmental features. The highest TFC was found in the ethanolic extracts (6.32 ± 1.66 QE/g) compared to the methanolic extracts (3.81 ± 1.14 QE/g). Additionally, the highest diversity in flavonoids was found in the ethanolic extract of guishe from region 3, which presented an intermedia NDWI and a lower NDVI. Despite the geo-climatic induced variations of the phytochemical profiles, the results confirm that guishe is a valuable raw material in terms of its flavonoid-enriched bioactive extracts. Additionally, the bioactive flavonoids remain stable when the conditioned agro-residue was hermetically stored at room temperature in the dark for nine months. Finally, the results enabled the establishment of both agro-ecological and biotechnological implications.

5.
Plant Sci ; 305: 110748, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33691954

RESUMEN

Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 µg), flavanone (291.51 µg), hesperidin (34.23 µg), delphinidin (24.23 µg), quercetin (15.57 µg), kaempferol (13.71 µg), cyanidin (12.32 µg), apigenin (9.70 µg) and catechin (7.91 µg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.


Asunto(s)
Agave/química , Agave/genética , Agave/metabolismo , Biomasa , Flavonoides/metabolismo , Extractos Vegetales/química , Residuos/análisis , Perfilación de la Expresión Génica , México
6.
Bioresour Technol ; 319: 124099, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32957043

RESUMEN

A comparison between microwave and ultrasound irradiations in the agave pretreatment using dilute sulfuric acid as catalyst was assessed for the first time. Pretreatments were performed using a Taguchi Orthogonal Array L9 (34) to improve the hemicellulose removal and the agave digestibility. The results showed that under optimal conditions, the hemicellulose removal was superior in the pretreatment assisted with microwave (77.5%) compared to ultrasound (28.2%). Enzymatic hydrolysis yield of agave pretreated with microwave (MWOC) was 2-fold higher than agave pretreated with ultrasound (USOC). The relatively mild conditions of pretreatment with MWOC allowed to obtain a hydrolyzed free of inhibitors with a high glucose concentration (47.7 g/L) at low solids loading (10% w/v). However, these conditions did not have a significant effect over the agave pretreated with ultrasound. The pretreatment assisted with MWOC allowed to reduce time and temperature of the process compared to pretreatment with conventional heating.


Asunto(s)
Agave , Celulosa , Hidrólisis , Microondas
7.
Bioresour Technol ; 275: 410-415, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30605828

RESUMEN

In this work, three Clostridium strains were tested for butanol production from Agave lechuguilla hydrolysates to select one for co-culturing. The agave hydrolysates medium was supplemented with nutrients and reducing agents to promote anaerobiosis. Clostridium acetobutylicum ATCC 824 had the highest butanol production (6.04 g/L) and was selected for further analyses. In the co-culture process, Bacillus subtilis CDBB 555 was used to deplete oxygen and achieve anaerobic conditions required for butanol production. The co-culture was prepared with C. acetobutylicum and B. subtilis without anaerobic pretreatment. Butanol production in co-culture from agave hydrolysates was compared with experiments using synthetic medium with glucose and a pure culture of C. acetobutylicum. The maximum butanol concentration obtained was 8.28 g/L in the co-cultured hydrolysate medium. Results obtained in the present work demonstrated that agave hydrolysates have the potential for butanol production using a co-culture of B. subtilis and C. acetobutylicum without anaerobic pretreatment.


Asunto(s)
Agave/metabolismo , Bacillus subtilis/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Anaerobiosis , Técnicas de Cocultivo , Fermentación
8.
Bioresour Technol ; 242: 184-190, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28325555

RESUMEN

The aim of the present work was to assess the autohydrolysis pretreatment of Agave tequilana bagasse for ethanol production. The pretreatment was conducted using a one-liter high pressure Parr reactor under different severity factors (SF) at a 1:6w/v ratio (solid:liquid) and 200rpm. The solids obtained under the selected autohydrolysis conditions were subjected to enzymatic hydrolysis with a commercial cellulase cocktail, and the enzymatic hydrolysate was fermented using Saccharomyces cerevisiae. The results obtained from the pretreatment process showed that the glucan content in the pretreated solid was mostly preserved, and an increase in the digestibility was observed for the case with a SF of 4.13 (190°C, 30min). Enzymatic hydrolysis of the pretreated solids showed a yield of 74.3%, with a glucose concentration of 126g/L, resulting in 65.26g/L of ethanol after 10h of fermentation, which represent a 98.4% conversion according to the theoretical ethanol yield value.


Asunto(s)
Agave , Celulosa , Celulasa , Etanol , Fermentación , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...