Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 13(3): 1150-1164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793861

RESUMEN

Background: The regenerative potential of the heart after injury is limited. Therefore, cell replacement strategies have been developed. However, the engraftment of transplanted cells in the myocardium is very inefficient. In addition, the use of heterogeneous cell populations precludes the reproducibility of the outcome. Methods: To address both issues, in this proof of principle study, we applied magnetic microbeads for combined isolation of eGFP+ embryonic cardiac endothelial cells (CECs) by antigen-specific magnet-associated cell sorting (MACS) and improved engraftment of these cells in myocardial infarction by magnetic fields. Results: MACS provided CECs of high purity decorated with magnetic microbeads. In vitro experiments revealed that the angiogenic potential of microbead-labeled CECs was preserved and the magnetic moment of the cells was strong enough for site-specific positioning by a magnetic field. After myocardial infarction in mice, intramyocardial CEC injection in the presence of a magnet resulted in a strong improvement of cell engraftment and eGFP+ vascular network formation in the hearts. Hemodynamic and morphometric analysis demonstrated augmented heart function and reduced infarct size only when a magnetic field was applied. Conclusion: Thus, the combined use of magnetic microbeads for cell isolation and enhanced cell engraftment in the presence of a magnetic field is a powerful approach to improve cell transplantation strategies in the heart.


Asunto(s)
Células Endoteliales , Infarto del Miocardio , Ratones , Animales , Microesferas , Reproducibilidad de los Resultados , Miocardio , Infarto del Miocardio/terapia , Separación Celular , Fenómenos Magnéticos
3.
Commun Biol ; 5(1): 197, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241778

RESUMEN

The nitric oxide-cGMP (NO-cGMP) pathway is of outstanding importance for vascular homeostasis and has multiple beneficial effects in vascular disease. Neointimal hyperplasia after vascular injury is caused by increased proliferation and migration of vascular smooth muscle cells (VSMCs). However, the role of NO-cGMP signaling in human VSMCs in this process is still not fully understood. Here, we investigate the interaction between platelet derived growth factor (PDGF)-signaling, one of the major contributors to neointimal hyperplasia, and the cGMP pathway in vascular smooth muscle, focusing on NO-sensitive soluble guanylyl cyclase (sGC). We show that PDGF reduces sGC expression by activating PI3K and Rac1, which in turn alters Notch ligand signaling. These data are corroborated by gene expression analysis in human atheromas, as well as immunohistological analysis of diseased and injured arteries. Collectively, our data identify the crosstalk between PDGF and NO/sGC signaling pathway in human VSMCs as a potential target to tackle neointimal hyperplasia.


Asunto(s)
Guanilato Ciclasa , Músculo Liso Vascular , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal
4.
Nat Commun ; 12(1): 3575, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117258

RESUMEN

An amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/metabolismo , Animales , Autofagia , Sitios de Unión , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Cardiomiopatía Restrictiva/terapia , Niño , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Corazón , Proteínas de Choque Térmico , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Proteómica , Sarcómeros/metabolismo
5.
PLoS One ; 14(2): e0208301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763348

RESUMEN

BACKGROUND: Clinical and experimental data give evidence that transplantation of stem and progenitor cells in myocardial infarction could be beneficial, although the underlying mechanism has remained elusive. Ventricular tachyarrhythmia is the most frequent and potentially lethal complication of myocardial infarction, but the impact of mono nuclear cells on the incidence of ventricular arrhythmia is still not clear. OBJECTIVE: We aimed to characterize the influence of splenic mononuclear cell populations on ventricular arrhythmia after myocardial infarction. METHODS: We assessed electrical vulnerability in vivo in mice with left ventricular cryoinfarction 14 days after injury and intramyocardial injection of specific subpopulations of mononuclear cells (MNCs) (CD11b-positive cells, Sca-1-positive cells, early endothelial progenitor cells (eEPCs)). As positive control group we used embryonic cardiomyocytes (eCMs). Epicardial mapping was performed for analysing conduction velocities in the border zone. Left ventricular function was quantified by echocardiography and left heart catheterization. RESULTS: In vivo pacing protocols induced ventricular tachycardia (VT) in 30% of non-infarcted mice. In contrast, monomorphic or polymorphic VT could be evoked in 94% of infarcted and vehicle-injected mice (p<0.01). Only transplantation of eCMs prevented post-infarction VT and improved conduction velocities in the border zone in accordance to increased expression of connexin 43. Cryoinfarction resulted in a broad aggravation of left ventricular function. All transplanted cell types augmented left ventricular function to a similar extent. CONCLUSIONS: Transplantation of different MNC populations after myocardial infarction improves left ventricular function similar to effects of eCMs. Prevention of inducible ventricular arrhythmia is only seen after transplantation of eCMs.


Asunto(s)
Arritmias Cardíacas/terapia , Infarto/terapia , Leucocitos Mononucleares/fisiología , Infarto del Miocardio/terapia , Animales , Arritmias Cardíacas/metabolismo , Antígeno CD11b/metabolismo , Conexina 43/metabolismo , Células Progenitoras Endoteliales/metabolismo , Mapeo Epicárdico/métodos , Infarto/metabolismo , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia , Función Ventricular Izquierda/fisiología
6.
Sci Rep ; 8(1): 17582, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514882

RESUMEN

For the monitoring of vascular growth as well as adaptive or therapeutic (re)vascularization endothelial-specific reporter mouse models are valuable tools. However, currently available mouse models have limitations, because not all endothelial cells express the reporter in all developmental stages. We have generated PECAM/eGFP embryonic stem (ES) cell and mouse lines where the reporter gene labels PECAM+ endothelial cells and vessels with high specificity. Native eGFP expression and PECAM staining were highly co-localized in vessels of various organs at embryonic stages E9.5, E15.5 and in adult mice. Expression was found in large and small arteries, capillaries and in veins but not in lymphatic vessels. Also in the bone marrow arteries and sinusoidal vessel were labeled, moreover, we could detect eGFP in some CD45+ hematopoietic cells. We also demonstrate that this labeling is very useful to monitor sprouting in an aortic ring assay as well as vascular remodeling in a murine injury model of myocardial infarction. Thus, PECAM/eGFP transgenic ES cells and mice greatly facilitate the monitoring and quantification of endothelial cells ex vivo and in vivo during development and injury.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Modelos Animales , Células Madre Embrionarias de Ratones/citología , Neovascularización Patológica , Neovascularización Fisiológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Animales , Médula Ósea/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Genes Reporteros , Ratones , Ratones Transgénicos , Remodelación Vascular
7.
Circ Res ; 123(3): 342-355, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29760016

RESUMEN

RATIONALE: Increased titin-dependent cardiomyocyte tension is a hallmark of heart failure with preserved ejection fraction associated with type-2 diabetes mellitus. However, the insulin-related signaling pathways that modify titin-based cardiomyocyte tension, thereby contributing to modulation of diastolic function, are largely unknown. OBJECTIVE: We aimed to determine how impaired insulin signaling affects titin expression and phosphorylation and thus increases passive cardiomyocyte tension, and whether metformin or neuregulin-1 (NRG-1) can correct disturbed titin modifications and increased titin-based stiffness. METHODS AND RESULTS: We used cardiac biopsies from human diabetic (n=23) and nondiabetic patients (n=19), cultured rat cardiomyocytes, left ventricular tissue from apolipoprotein E-deficient mice with streptozotocin-induced diabetes mellitus (n=12-22), and ZSF1 (obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid) rats (n=5-6) and analyzed insulin-dependent signaling pathways that modulate titin phosphorylation. Titin-based passive tension was measured using permeabilized cardiomyocytes. In human diabetic hearts, we detected titin hypophosphorylation at S4099 and hyperphosphorylation at S11878, suggesting altered activity of protein kinases; cardiomyocyte passive tension was significantly increased. When applied to cultured cardiomyocytes, insulin and metformin increased titin phosphorylation at S4010, S4099, and S11878 via enhanced ERK1/2 (extracellular signal regulated kinase 1/2) and PKCα (protein kinase Cα) activity; NRG-1 application enhanced ERK1/2 activity but reduced PKCα activity. In apolipoprotein E-deficient mice, chronic treatment of streptozotocin-induced diabetes mellitus with NRG-1 corrected titin phosphorylation via increased PKG (protein kinase G) and ERK1/2 activity and reduced PKCα activity, which reversed the diabetes mellitus-associated changes in titin-based passive tension. Acute application of NRG-1 to obese ZSF1 rats with type-2 diabetes mellitus reduced end-diastolic pressure. CONCLUSIONS: Mechanistically, we found that impaired cGMP-PKG signaling and elevated PKCα activity are key modulators of titin-based cardiomyocyte stiffening in diabetic hearts. We conclude that by restoring normal kinase activities of PKG, ERK1/2, and PKCα, and by reducing cardiomyocyte passive tension, chronic NRG-1 application is a promising approach to modulate titin properties in heart failure with preserved ejection fraction associated with type-2 diabetes mellitus.


Asunto(s)
Conectina/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Insulina/farmacología , Miocitos Cardíacos/metabolismo , Neurregulina-1/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Animales , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Zucker
8.
Thorac Cardiovasc Surg ; 66(1): 42-52, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29284167

RESUMEN

Preclinical data suggested that somatic stem or progenitor cells derived induce and/or support endogenous repair mechanisms of the myocardium. Such cell populations were clearly shown to promote neovascularization in postischemic tissue, and some evidence also indicated transdifferentiation into cardiomyocytes. In the clinical setting, however, many attempts to regenerate damaged myocardium with a variety of autologous and allogeneic somatic progenitors have failed to generate the expected therapeutic efficacy. Currently, efforts are being made to select specific cellular subpopulations, modify somatic cells to augment their regenerative capacity, improve delivery methods, and develop markers selection of potentially responding patients. Cardiac surgical groups have pioneered and continue to advance the field of cellular therapies. While the initial excitement has subsided, the field has evolved into one of the pillars of surgical research and benefits from novel methods such as cellular reprogramming, genetic modification, and pluripotent stem cell technology. This review highlights developments and controversies in somatic cardiac cell therapy and provides a comprehensive overview of completed and ongoing clinical trials.


Asunto(s)
Células Madre Adultas/trasplante , Trasplante de Médula Ósea , Enfermedades Cardiovasculares/cirugía , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Mioblastos Esqueléticos/trasplante , Miocardio/patología , Regeneración , Medicina Regenerativa/métodos , Células Madre Adultas/metabolismo , Animales , Trasplante de Médula Ósea/efectos adversos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Diferenciación Celular , Linaje de la Célula , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Mioblastos Esqueléticos/metabolismo , Miocardio/metabolismo , Fenotipo , Recuperación de la Función , Transducción de Señal , Resultado del Tratamiento
9.
Thorac Cardiovasc Surg ; 66(1): 53-62, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216651

RESUMEN

For more than 20 years, tremendous efforts have been made to develop cell-based therapies for treatment of heart failure. However, the results of clinical trials using somatic, nonpluripotent stem or progenitor cells have been largely disappointing in both cardiology and cardiac surgery scenarios. Surgical groups were among the pioneers of experimental and clinical myocyte transplantation ("cellular cardiomyoplasty"), but little translational progress was made prior to the development of cellular reprogramming for creation of induced pluripotent stem cells (iPSC). Ever since, protocols have been developed which allow for the derivation of large numbers of autologous cardiomyocytes (CMs) from patient-specific iPSC, moving translational research closer toward clinical pilot trials. However, compared with somatic cell therapy, the technology required for safe and efficacious pluripotent stem cell (PSC)-based therapies is extremely complex and requires tremendous resources and close interactions between basic scientists and clinicians. This review summarizes PSC sources, strategies to derive CMs, current cardiac tissue engineering approaches, concerns regarding immunogenicity and cellular maturity, and highlights the contributions made by surgical groups.


Asunto(s)
Enfermedades Cardiovasculares/cirugía , Células Madre Embrionarias/trasplante , Miocardio/patología , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/trasplante , Regeneración , Medicina Regenerativa/métodos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Linaje de la Célula , Reprogramación Celular , Técnicas de Reprogramación Celular , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Recuperación de la Función , Transducción de Señal , Resultado del Tratamiento
10.
Basic Res Cardiol ; 110(3): 33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25925989

RESUMEN

Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific αMHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo.


Asunto(s)
Núcleo Celular/metabolismo , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Imagen Óptica/métodos , Animales , Ciclo Celular/fisiología , Células Madre Embrionarias/citología , Citometría de Flujo , Corazón/embriología , Corazón/crecimiento & desarrollo , Histonas , Humanos , Proteínas Luminiscentes , Ratones , Proteínas Recombinantes de Fusión , Transfección , Proteína Fluorescente Roja
11.
Nat Commun ; 3: 1076, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23011130

RESUMEN

Current approaches to monitor and quantify cell division in live cells, and reliably distinguish between acytokinesis and endoreduplication, are limited and complicate determination of stem cell pool identities. Here we overcome these limitations by generating an in vivo reporter system using the scaffolding protein anillin fused to enhanced green fluorescent protein, to provide high spatiotemporal resolution of mitotic phase. This approach visualizes cytokinesis and midbody formation as hallmarks of expansion of stem and somatic cells, and enables distinction from cell cycle variations. High-resolution microscopy in embryonic heart and brain tissues of enhanced green fluorescent protein-anillin transgenic mice allows live monitoring of cell division and quantitation of cell cycle kinetics. Analysis of cell division in hearts post injury shows that border zone cardiomyocytes in the infarct respond with increasing ploidy, but not cell division. Thus, the enhanced green fluorescent protein-anillin system enables monitoring and measurement of cell division in vivo and markedly simplifies in vitro analysis in fixed cells.


Asunto(s)
Ciclo Celular/fisiología , División Celular/fisiología , Mitosis/fisiología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Ciclo Celular/genética , División Celular/genética , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Corazón/embriología , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mitosis/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo
12.
Basic Res Cardiol ; 107(2): 257, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22382299

RESUMEN

Vessel formation is of critical importance for organ function in the normal and diseased state. In particular, the labeling and quantitation of small vessels prove to be technically challenging using current approaches. We have, therefore, established a transgenic embryonic stem (ES) cell line and a transgenic mouse model where the vascular endothelial growth factor receptor VEGFR-1 (flt-1) promoter drives the expression of the live reporter eGFP. Fluorescence microscopy and immunostainings revealed endothelial-specific eGFP labeling of vascular networks. The expression pattern recapitulates that of the endogenous flt-1 gene, because small and large vessels are labeled by eGFP during embryonic development; after birth, the expression becomes more restricted to small vessels. We have explored this in the cardiovascular system more in detail and found that all small vessels and capillaries within the heart are strongly eGFP+. In addition, myocardial injuries have been induced in transgenic mice and prominent vascular remodeling, and an increase in endothelial cell area within the peri-infarct area could be observed underscoring the utility of this mouse model. Thus, the transgenic flt-1/eGFP models are powerful tools to investigate and quantify vascularization in vivo and to probe the effect of different compounds on vessel formation in vitro.


Asunto(s)
Endotelio Vascular/citología , Ratones Transgénicos , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/fisiología , Regiones Promotoras Genéticas , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Western Blotting , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Cell Transplant ; 20(10): 1621-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21439129

RESUMEN

Cellular cardiomyoplasty (CMP) is a novel therapeutic approach to myocardial injury (MI). Post-MI remodeling of the left ventricle (LV) comprises dilatation and impairment of systolic function and gives rise to progressive hemodynamic deterioration. We aimed to investigate: a) the impact of CMP on global and regional parameters of LV remodeling (LVR) as well as contractile reserve and b) the suitability and validity of different echocardiographic methods in this scenario. Murine ventricular cardiomyocytes (E13.5-E16.5) were transplanted into cryolesioned hearts of male HIM-OF1 mice. Echocardiography was performed at rest 4 and 14 days postoperatively. For quantification of akinetic myocardial mass and contractile reserve 2 weeks postoperatively additionally low-dose dobutamine stress echocardiography was conducted. Reconstructive 3D-echocardiography (r3D-echo) was compared to "plain" echocardiographic investigations and was compared to invasive measurements with conduction catheter. CMP significantly attenuated LV dilatation and reduced LV function decline on day 14, as obtained with all echocardiographic modalities and confirmed with conduction catheter measurements. In contrast to plain echocardiography and invasive testing, r3D-echo allowed noninvasive quantification of scar size and assessment of regional contractile reserve. Cell transplanted hearts demonstrated a significant decrease of akinetic myocardial mass (-CMP: 13 ± 2%; +CMP 7 ± 1%; p < 0.001) and increased regional contractile reserve, an indirect sign of myocardial viability. The present study demonstrates beneficial effects of CMP on global and regional parameters of LVR and contractile reserve after MI. In contrast to "simple" 2D echocardiography, r3D-echo allowed the assessment of regional contractile reserve and quantification of akinetic myocardial mass as additive functional and morphological measures of LVR.


Asunto(s)
Cardiomioplastia , Ecocardiografía Tridimensional/métodos , Infarto del Miocardio/cirugía , Animales , Hemodinámica , Masculino , Ratones , Remodelación Ventricular/fisiología
14.
Hypertension ; 54(1): 157-63, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19470879

RESUMEN

beta(2)-adrenoceptors are important modulators of vascular tone, particularly in the pulmonary circulation. Because neurohormonal activation occurs in pulmonary arterial hypertension, we have investigated the effect of different adrenergic vasoactive substances on tone regulation in large and small pulmonary arteries, as well as in systemic vessels of mice. We found that the beta(2)-adrenoceptor antagonist ICI 118,551 (ICI) evoked a decrease of vascular tone in large pulmonary arteries and reduced the sensitivity of pulmonary arteries toward different contracting agents, eg, norepinephrine, serotonin, or endothelin. ICI proved to act specifically on pulmonary vessels, because it shifted the dose-response curve of norepinephrine to the right in pulmonary arteries, whereas there was no effect in the aorta. Pharmacological experiments proved that the right shift of the norepinephrine dose-response curve by ICI was mediated via a beta(2)-adrenoceptor/G(i/o) protein-dependent pathway enhancing NO production in the endothelium; these results were corroborated in beta-adrenoceptor and endothelial NO synthase knockout mice where ICI had no effect. ICI increased vascular lumen diameter in lung sections and reduced pulmonary arterial pressure under normoxia and under hypoxia in the isolated perfused lung model. These effects were found to be physiologically relevant, because ICI specifically decreased pulmonary but not systemic blood pressure in vivo. Thus, the beta(2)-adrenoceptor antagonist ICI is a pulmonary arterial-specific vasorelaxant and, therefore, a potentially interesting novel therapeutic agent for the treatment of pulmonary arterial hypertension.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Óxido Nítrico/metabolismo , Propanolaminas/farmacología , Arteria Pulmonar/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Relación Dosis-Respuesta a Droga , Femenino , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Norepinefrina/farmacología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/fisiología , Transducción de Señal/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
15.
Nat Med ; 10(5): 494-501, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15107841

RESUMEN

Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow-derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow-derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.


Asunto(s)
Células Madre Hematopoyéticas/citología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Fusión Celular , Movimiento Celular , Supervivencia de Injerto , Proteínas Fluorescentes Verdes , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Operón Lac , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...