Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunol Lett ; 267: 106851, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479480

RESUMEN

Bacillus Calmette-Guérin (BCG) vaccination induces memory characteristics in innate immune cells and their progenitors, a process called trained immunity mediated by epigenetic and metabolic reprogramming. Cholesterol synthesis plays an amplifying role in trained immunity through mevalonate release. Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, can inhibit cholesterol synthesis. We explored their effects on trained immunity induced by BCG in a placebo-controlled clinical study (NL74082.091.20) in young, healthy individuals. Participants receiving single-dose oral alendronate on the day of BCG vaccination had more neutrophils and plasma cells one month after treatment. Alendronate led to reduced proinflammatory cytokine production by PBMCs stimulated with heterologous bacterial and viral stimuli one month later. Furthermore, the addition of alendronate transcriptionally suppressed multiple immune response pathways in PBMCs upon stimulation. Our findings indicate that N-BPs modulate the long-lasting effects of BCG vaccination on the cytokine production capacity of innate immune cells.


Asunto(s)
Alendronato , Vacuna BCG , Citocinas , Leucocitos Mononucleares , Vacunación , Humanos , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Citocinas/metabolismo , Alendronato/farmacología , Masculino , Adulto , Femenino , Adulto Joven , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Voluntarios Sanos , Memoria Inmunológica/efectos de los fármacos
2.
Eur J Immunol ; 52(3): 431-446, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34821391

RESUMEN

Innate immune cells are able to build memory characteristics via a process termed "trained immunity." Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro-induced trained immunity responses were assessed in two independent population-based cohorts of healthy individuals, the 300 Bacillus Calmette-Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta-analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K-Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec-5 and Siglec-14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.


Asunto(s)
Vacuna BCG , Inmunidad Innata , Genómica , Humanos , Fosfatidilinositol 3-Quinasas/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
3.
Immunol Rev ; 281(1): 28-39, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248003

RESUMEN

Immunological memory was long considered a trait exclusive to cells of the adaptive immune system. However, recent studies have shown that after activation of the innate immune system, innate immune cells may undergo long-term functional reprogramming characterized by the ability to mount either a stronger or attenuated inflammatory response upon reactivation. This phenomenon, which has been termed trained immunity and is a de facto innate immune memory, is regulated by a network of integrated metabolic and epigenetic rewiring. The endogenous mediators that modulate trained immunity in the host are only partially understood, but increasing evidence supports the concept that the interleukin (IL)-1 family of cytokines plays an important role. In this review, we will highlight key findings from studies that provide insight into the multifaceted roles of members of the IL-1 family for trained immunity. Finally, we will discuss how the recent advances of our understanding on the role of IL-1 cytokines in this field may lead to new therapeutic strategies for treatment of common conditions, such as IL-1-driven autoinflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes/terapia , Inmunidad Innata , Síndromes de Inmunodeficiencia/terapia , Memoria Inmunológica , Interleucina-1/metabolismo , Vacunas/inmunología , Animales , Reprogramación Celular , Epigénesis Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...