Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 10(1): 120, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927748

RESUMEN

BACKGROUND: Ixodes ricinus ticks vector pathogens that cause serious health concerns. Like in other arthropods, the microbiome may affect the tick's biology, with consequences for pathogen transmission. Here, we explored the bacterial communities of I. ricinus across its developmental stages and six geographic locations by the 16S rRNA amplicon sequencing, combined with quantification of the bacterial load. RESULTS: A wide range of bacterial loads was found. Accurate quantification of low microbial biomass samples permitted comparisons to high biomass samples, despite the presence of contaminating DNA. The bacterial communities of ticks were associated with geographical location rather than life stage, and differences in Rickettsia abundance determined this association. Subsequently, we explored the geographical distribution of four vertically transmitted symbionts identified in the microbiome analysis. For that, we screened 16,555 nymphs from 19 forest sites for R. helvetica, Rickettsiella spp., Midichloria mitochondrii, and Spiroplasma ixodetis. Also, the infection rates and distributions of these symbionts were compared to the horizontally transmitted pathogens Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. The infection rates of all vertically transmitted symbionts differed between the study sites, and none of the symbionts was present in all tested ticks suggesting a facultative association with I. ricinus. The proportions in which symbionts occurred in populations of I. ricinus were highly variable, but geographically close study sites expressed similar proportions. These patterns were in contrast to what we observed for horizontally transmitted pathogens. Lastly, nearly 12% of tested nymphs were free of any targeted microorganisms, which is in line with the microbiome analyses. CONCLUSIONS: Our results show that the microbiome of I. ricinus is highly variable, but changes gradually and ticks originating from geographically close forest sites express similar bacterial communities. This suggests that geography-related factors affect the infection rates of vertically transmitted symbionts in I. ricinus. Since some symbionts, such as R. helvetica can cause disease in humans, we propose that public health investigations consider geographical differences in its infection rates.


Asunto(s)
Anaplasma phagocytophilum , Ixodes , Rickettsia , Anaplasma phagocytophilum/genética , Animales , Humanos , Ixodes/genética , Ixodes/microbiología , Ninfa/microbiología , ARN Ribosómico 16S/genética , Rickettsia/genética
3.
Microb Ecol ; 84(2): 336-350, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34585289

RESUMEN

At certain nutrient concentrations, shallow freshwater lakes are generally characterized by two contrasting ecological regimes with disparate patterns of biodiversity and biogeochemical cycles: a macrophyte-dominated regime (MDR) and a phytoplankton-dominated regime (PDR). To reveal ecological mechanisms that affect bacterioplankton along the regime shift, Illumina MiSeq sequencing of the 16S rRNA gene combined with a novel network clustering tool (Manta) were used to identify patterns of bacterioplankton community composition across the regime shift in Taihu Lake, China. Marked divergence in the composition and ecological assembly processes of bacterioplankton community was observed under the regime shift. The alpha diversity of the bacterioplankton community consistently and continuously decreased with the regime shift from MDR to PDR, while the beta diversity presents differently. Moreover, as the regime shifted from MDR to PDR, the contribution of deterministic processes (such as environmental selection) to the assembly of bacterioplankton community initially decreased and then increased again as regime shift from MDR to PDR, most likely as a consequence of differences in nutrient concentration. The topological properties, including modularity, transitivity and network diameter, of the bacterioplankton co-occurrence networks changed along the regime shift, and the co-occurrences among species changed in structure and were significantly shaped by the environmental variables along the regime transition from MDR to PDR. The divergent environmental state of the regimes with diverse nutritional status may be the most important factor that contributes to the dissimilarity of bacterioplankton community composition along the regime shift.


Asunto(s)
Biodiversidad , Lagos , Organismos Acuáticos , China , Ecosistema , Lagos/química , Filogenia , Fitoplancton/genética , Plancton/genética , ARN Ribosómico 16S/genética
4.
Nat Methods ; 19(1): 51-54, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34887550

RESUMEN

Mako is a software tool that converts microbiome data and networks into a graph database and visualizes query results, thus allowing users without programming knowledge to carry out network-based queries. Mako is accompanied by a database compiled from 60 microbiome studies that is easily extended with the user's own data. We illustrate mako's strengths by enumerating association partners linked to propionate production and comparing frequencies of different network motifs across habitat types.


Asunto(s)
Biología Computacional/métodos , Microbiota , Programas Informáticos , Animales , Gráficos por Computador , Visualización de Datos , Bases de Datos Factuales , Interfaz Usuario-Computador
5.
ISME Commun ; 1(1): 36, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37938641

RESUMEN

Microbial network construction and analysis is an important tool in microbial ecology. Such networks are often constructed from statistically inferred associations and may not represent ecological interactions. Hence, microbial association networks are error prone and do not necessarily reflect true community structure. We have developed anuran, a toolbox for investigation of noisy networks with null models. Such models allow researchers to generate data under the null hypothesis that all associations are random, supporting identification of nonrandom patterns in groups of association networks. This toolbox compares multiple networks to identify conserved subsets (core association networks, CANs) and other network properties that are shared across all networks. We apply anuran to a time series of fecal samples from 20 women to demonstrate the existence of CANs in a subset of the sampled individuals. Moreover, we use data from the Global Sponge Project to demonstrate that orders of sponges have a larger CAN than expected at random. In conclusion, this toolbox is a resource for investigators wanting to compare microbial networks across conditions, time series, gradients, or hosts.

6.
Microbiome ; 8(1): 82, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498714

RESUMEN

BACKGROUND: Microbial interactions shape the structure and function of microbial communities; microbial co-occurrence networks in specific environments have been widely developed to explore these complex systems, but their interconnection pattern across microbiomes in various environments at the global scale remains unexplored. Here, we have inferred an Earth microbial co-occurrence network from a communal catalog with 23,595 samples and 12,646 exact sequence variants from 14 environments in the Earth Microbiome Project dataset. RESULTS: This non-random scale-free Earth microbial co-occurrence network consisted of 8 taxonomy distinct modules linked with different environments, which featured environment specific microbial co-occurrence relationships. Different topological features of subnetworks inferred from datasets trimmed into uniform size indicate distinct co-occurrence patterns in the microbiomes of various environments. The high number of specialist edges highlights that environmental specific co-occurrence relationships are essential features across microbiomes. The microbiomes of various environments were clustered into two groups, which were mainly bridged by the microbiomes of plant and animal surface. Acidobacteria Gp2 and Nisaea were identified as hubs in most of subnetworks. Negative edges proportions ranged from 1.9% in the soil subnetwork to 48.9% the non-saline surface subnetwork, suggesting various environments experience distinct intensities of competition or niche differentiation. Video abstract CONCLUSION: This investigation highlights the interconnection patterns across microbiomes in various environments and emphasizes the importance of understanding co-occurrence feature of microbiomes from a network perspective.


Asunto(s)
Bacterias , Microbiota , Microbiología del Suelo , Animales , Bacterias/genética , Consorcios Microbianos , Suelo
7.
mSystems ; 5(1)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071163

RESUMEN

Microbial network inference and analysis have become successful approaches to extract biological hypotheses from microbial sequencing data. Network clustering is a crucial step in this analysis. Here, we present a novel heuristic network clustering algorithm, manta, which clusters nodes in weighted networks. In contrast to existing algorithms, manta exploits negative edges while differentiating between weak and strong cluster assignments. For this reason, manta can tackle gradients and is able to avoid clustering problematic nodes. In addition, manta assesses the robustness of cluster assignment, which makes it more robust to noisy data than most existing tools. On noise-free synthetic data, manta equals or outperforms existing algorithms, while it identifies biologically relevant subcompositions in real-world data sets. On a cheese rind data set, manta identifies groups of taxa that correspond to intermediate moisture content in the rinds, while on an ocean data set, the algorithm identifies a cluster of organisms that were reduced in abundance during a transition period but did not correlate strongly to biochemical parameters that changed during the transition period. These case studies demonstrate the power of manta as a tool that identifies biologically informative groups within microbial networks.IMPORTANCE manta comes with unique strengths, such as the abilities to identify nodes that represent an intermediate between clusters, to exploit negative edges, and to assess the robustness of cluster membership. manta does not require parameter tuning, is straightforward to install and run, and can be easily combined with existing microbial network inference tools.

8.
Nat Rev Microbiol ; 17(3): 193, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30542201

Asunto(s)
Microbiota
9.
FEMS Microbiol Rev ; 42(6): 761-780, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085090

RESUMEN

Microbial networks are an increasingly popular tool to investigate microbial community structure, as they integrate multiple types of information and may represent systems-level behaviour. Interpreting these networks is not straightforward, and the biological implications of network properties are unclear. Analysis of microbial networks allows researchers to predict hub species and species interactions. Additionally, such analyses can help identify alternative community states and niches. Here, we review factors that can result in spurious predictions and address emergent properties that may be meaningful in the context of the microbiome. We also give an overview of studies that analyse microbial networks to identify new hypotheses. Moreover, we show in a simulation how network properties are affected by tool choice and environmental factors. For example, hub species are not consistent across tools, and environmental heterogeneity induces modularity. We highlight the need for robust microbial network inference and suggest strategies to infer networks more reliably.


Asunto(s)
Microbiota/fisiología , Simulación por Computador , Ambiente , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...