Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38728548

RESUMEN

Food contact materials (FCMs) from three countries were analysed for all extractable organofluorines (EOFs) from the materials and subsequently by target and non-target analysis for per- and polyfluoroalkyl substances (PFAS). The EOF varied by two orders of magnitude for FCM from UK and Saudi Arabia ranging between 2.14 and 483 ng cm-2 (0.2-48 ng g-1) showing that one quarter of all samples were above the Danish regulation for PFAS in FCM. Target PFAS showed high variability in composition and accounted for less than 1% of the EOF. Non-target PFAS screening using HPLC-ICP-MS and coupled simultaneously to HRMS showed the occurrence of organofluorines which were identified by neither LC-MS/MS nor LC-HRMS. This illustrates that the current target PFAS approaches fail to identify EOFs from FCM, which would be a problem with the new EU proposal to ban all PFAS.

2.
J Sci Food Agric ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597303

RESUMEN

BACKGROUND: Including seaweed in cattle feed has gained increased interest, but it is important to take into account that the concentration of toxic metals, especially arsenic, is high in seaweed. This study investigated the arsenic species in milk from seaweed-fed cows. RESULTS: Total arsenic in milk of control diets (9.3 ± 1.0 µg As kg-1, n = 4, dry mass) was significantly higher than seaweed-based diet (high-seaweed diet: 7.8 ± 0.4 µg As kg-1, P < 0.05, n = 4, dry mass; low-seaweed diet: 6.2 ± 1.0 µg As kg-1, P < 0.01, n = 4, dry mass). Arsenic speciation showed that the main species present were arsenobetaine (AB) and arsenate (As(V)) (37% and 24% of the total arsenic, respectively). Trace amounts of dimethylarsinic acid (DMA) and arsenocholine (AC) have also been detected in milk. Apart from arsenate being significantly lower (P < 0.001) in milk from seaweed-fed cows than in milk from the control group, other arsenic species showed no significant differences between groups. CONCLUSION: The lower total arsenic and arsenate in seaweed diet groups indicates a possible competition of uptake between arsenate and phosphate, and the presence of AC indicates that a reduction of AB occurred in the digestive tract. Feeding a seaweed blend (91% Ascophyllum nodosum and 9% Laminaria digitata) does not raise As-related safety concerns for milk. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Anal Bioanal Chem ; 416(11): 2809-2818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38189919

RESUMEN

In this study, arsenic (As) speciation was investigated in the freshwater alga Chlamydomonas reinhardtii treated with 20 µg/L arsenate using fractionation as well as ICP-MS/ESI-MS analyses and was compared with the known As metabolite profile of wild-grown Saccharina latissima. While the total As accumulation in C. reinhardtii was about 85% lower than in S. latissima, the relative percentage of arsenolipids was significantly higher in C. reinhardtii (57.0% vs. 5.01%). As-containing hydrocarbons and phospholipids dominated the hydrophobic As profile in S. latissima, but no As-containing hydrocarbons were detectable in C. reinhardtii. Instead for the first time, an arsenoriboside-containing phytol (AsSugPhytol) was found to dominate the hydrophobic arsenicals of C. reinhardtii. Interestingly, this compound and its relatives had so far been only found in green marine microalgae, open sea plankton (mixed assemblage), and sediments but not in brown or red macroalgae. This compound family might therefore relate to differences in the arsenic metabolism between the algae phyla.


Asunto(s)
Arsénico , Arsenicales , Chlamydomonas reinhardtii , Algas Comestibles , Laminaria , Arsenicales/química , Arsénico/metabolismo , Chlamydomonas reinhardtii/metabolismo , Hidrocarburos
4.
Anal Bioanal Chem ; 416(6): 1399-1405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227015

RESUMEN

The total arsenic mass fraction as well as the arsenic speciation were studied in four different mushroom species with inductively coupled plasma mass spectrometry and high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Arsenic mass fractions detected in the mushrooms were covering a range from 0.3 to 22 mg As kg-1 dry mass. For the arsenic speciation, species like arsenobetaine, inorganic arsenic, or dimethylarsinic acid were found, which are commonly detected in mushrooms, but it was also proven that the recently discovered novel compound homoarsenocholine is present in Amanita muscaria and Ramaria sanguinea. Moreover, a previously unidentified arsenic species was isolated from Ramaria sanguinea and identified as trimethylarsonioacetamide, or in short: arsenobetaine amide. This new arsenical was synthesized and verified by spiking experiments to be present in all investigated mushroom samples. Arsenobetaine amide could be an important intermediate to further elucidate the biotransformation pathways of arsenic in the environment.


Asunto(s)
Arsénico , Arsenicales , Basidiomycota , Arsénico/análisis , Espectrometría de Masas/métodos , Arsenicales/análisis , Cromatografía Líquida de Alta Presión/métodos
5.
Anal Bioanal Chem ; 416(11): 2677-2682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37994920

RESUMEN

Rice is a staple food and known to accumulate inorganic arsenic (iAs), which is a class 1 carcinogen to humans. Arsenic field-deployable method kits, designed for water testing, are able to screen iAs in rice, to assure food safety and quick decision-making without the need for laboratory analysis. For the arsenic extraction within the field method, nitric acid is used. To make the field method on-site safer, cost-effective and easier to handle, the method was adapted using a Cola in the extraction process. The adapted field-deployable method was tested by screening a total of 30 rice and rice products from the Austrian market. To verify the results obtained by the Cola extraction field-deployable method, the obtained iAs concentration was compared to HPLC-ICP-MS results. The Cola extraction field method obtained an LOD of 39 µg iAs kg-1 rice, and with an average reproducibility of 14% RSD, the method was capable of recording no false-negative but 7% false-positive values at the 2023 updated European Commission (EC) limits for rice. All, but one, screened rice samples were within the EU limits for iAs in rice and rice products.


Asunto(s)
Arsénico , Arsenicales , Oryza , Humanos , Arsénico/análisis , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Arsenicales/análisis
6.
Heliyon ; 9(7): e18314, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519744

RESUMEN

This review aimed to investigate the reported concentrations of arsenic (As), cadmium (Cd), and lead (Pb) in rice cultivated in Africa and African rice paddies compared to other regions. It also aimed to explore the factors influencing these concentrations and evaluate the associated health risks of elevated As, Cd, and Pb exposure. Relevant data were obtained from electronic databases such as PubMed, Scopus, and Google Scholar using specific keywords related to arsenic, cadmium, lead, rice, Africa, paddy, and grain. While the number of studies reporting the concentrations of As, Cd, and Pb in rice and rice paddies in Africa is relatively low compared to other regions, this review revealed that most of the African rice and paddy soils have low concentrations of these metals. However, some studies have reported elevated concentrations of As, Cd, and Pb in paddy fields, which is concerning due to the increased use of agrochemicals containing heavy metals in rice production. Nonetheless, agronomical interventions such as implementing alternate wetting and drying water management, cultivating cultivars with low accumulation of As, Cd, and Pb, amending rice fields with sorbents, and screening irrigation water can limit the bioaccumulation of these carcinogens in paddy fields using phytoremediation techniques. Therefore, we strongly urge African governments and organizations operating in Africa to enhance the capacity of rice farmers and extension officers in adopting approaches and practices that reduce the accumulation of these carcinogenic metals in rice. This is essential to achieve the sustainable development goal of providing safe food for all.

7.
J Trace Elem Med Biol ; 79: 127218, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244048

RESUMEN

BACKGROUND: Following a well-balanced diet ensures that a person gets all the essential elements for health sustenance. However, in the United Kingdom an increasing proportion of people are transiting to become vegans who exclude animal-based products in their diets. Consequently, people may have a deficit of essential elements such as iodine which is not present in most plant-based meals, additionally iodide fortified table salt is not commonly used in the UK. Without iodine people consuming a vegan diet risk developing iodine deficiency and diseases like goiter. METHODS: The objective of this study is to determine the difference in iodine content and iodine speciation between plant-based and dairy products. More than 100 market samples of plant-based and dairy milk products were collected in Scotland, UK. RESULTS: Iodine concentrations in dairy milk is ten times higher compared to plant-based milks. Similar differences were also apparent for butter, yogurt and cheese. A total of 20% of plant-based milk products were fortified with iodine, however these products had lower iodine concentrations compare to the equivalent dairy products. In this study we calculated that people with average diet have an iodine intake of 226 + /- 103 µg day-1 from dairy products which satisfies the WHO recommended intake of adults and 90% of the recommend intake for pregnant and breast-feeding women. A diet from substituted dairy products gives only 21.8 µg day-1 for the respective WHO guideline intake values, which accounts only 15% of the iodine intake for adults and 9% for pregnant and lactating women. Iodine fortified diet could increase the iodine intake to 55% or 33% of the WHO recommended daily intake respectively. CONCLUSION: Plant-based dairy consumers are encouraged to use iodine fortified dairy products or use of iodized salt in the UK for home cooking, otherwise there are at risk to get iodine deficient.


Asunto(s)
Yodo , Desnutrición , Embarazo , Animales , Femenino , Lactancia , Productos Lácteos , Leche/química , Dieta , Yodo/análisis , Estado Nutricional
8.
Health Serv Manage Res ; : 9514848231172073, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098412

RESUMEN

Healthcare professionals' innovative work behavior (IWB) plays a key role in the development and implementation of innovative solutions in hospitals. However, relevant antecedents of IWB have not been fully captured to date. This study empirically examines the relationships between proactive personality, collaborative competence, innovation climate, and IWB. Hypotheses were tested using a sample of 442 chief physicians from 380 German hospitals. The results indicate a positive and significant influence of proactive personality, collaborative competence, and innovation climate on IWB, with collaborative competence having a stronger influence on IWB than innovation climate. Managers should note that important resources for IWB are accessible through a variety of actors and relationships. To leverage these resources and thus promote IWB, more emphasis should be placed on an employee's network.

9.
Food Addit Contam Part B Surveill ; 16(2): 185-195, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37013463

RESUMEN

Fifty-one rice samples, i.e. 25 rice varieties, 8 rice products, and 18 rice containing baby foods from the Austrian market were surveyed for arsenic, cadmium, and lead. Inorganic arsenic (iAs) is most toxic to human health, and its mean concentrations in rice were 120 µg kg-1, 191 µg kg-1 in rice products, and 77 µg kg-1 in baby foods. The average dimethylarsinic acid and methylarsonic acid concentrations were 56 µg kg-1 and 2 µg kg-1, respectively. The highest iAs concentration was found in rice flakes (237 ± 15 µg kg-1), close to the Maximum Level (ML) set by the EU regulation for husked rice (250 µg kg-1). The levels of cadmium (12 to 182 µg kg-1) and lead (6 to 30 µg kg-1) in the majority of rice samples were below the European ML. Upland grown rice from Austria showed both, low inorganic arsenic (<19 µg kg-1) and cadmium (<38 µg kg-1) concentrations.


Asunto(s)
Arsénico , Oryza , Humanos , Arsénico/análisis , Austria , Cadmio/análisis , Contaminación de Alimentos/análisis , Plomo
10.
Heliyon ; 8(11): e11928, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36468122

RESUMEN

Simultaneous impact of zero valent iron (Fe°) and rice cultivar on uptake, translocation, and bioaccumulation of cobalt (Co) and lead (Pb) in rice (Oryza sativa L.) was investigated to alleviate Co and Pb toxicity in rice. Kilombero and Faya rice cultivars, amended with Fe° dosages of 0, 6.20, and 12.40 g Fe° kg-1 soil, were cultivated under continuous flooding in pots in a greenhouse. Shoot and grain-Co and Pb concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). For Co, amending Faya rice with at least 6.20 g Fe° kg-1 reduced grain-Co accumulation by 33% or more compared to control plants (F = 17.5; p < 0.001) while inconsistent results were obtained for Kilombero. For Pb, Faya also accumulated more than 39% less grain-Pb than control plants (272 µg kg-1) while Kilombero accumulated more than 55% less grain-Pb than control plants under the same conditions. Despite reducing grain-Pb accumulation in both cultivar, Fe amendments of at least 6.20 g Fe° kg-1 reduced grain-Pb accumulation with greater magnitude in Kilombero (55%) than in Faya (39%). Nonetheless, Fe amendments inhibited greater shoots-Co and Pb translocation (≥32%) to grains in Faya compared to Kilombero (≤20%). The work provides a novel promising agronomical practice of reducing Co and Pb bioaccumulation in rice.

11.
J Trace Elem Med Biol ; 71: 126968, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35259617

RESUMEN

BACKGROUND: Shrimp is a worldwide food commodity, it is a source of several nutrients and vitamins; however, this food is one of the major sources of arsenic for humans. Legislation around the world set limits for the concentration of this element in crustaceans but is mainly concerned with total analysis. Although, arsenic species have different toxicities and total analysis could be ineffective for making decisions about food security. METHODS: Samples of wild (Farfantepenaeus brasiliensis) and farmed shrimps (Litopenaeus vannamei) from NE Brazil were fractionated in subsamples of carapace, muscle tissue and viscera. The whole shrimp as well as the animal tissue fractions were decomposed using microwave digestion and total arsenic was analyzed by mass spectrometry inductively coupled plasm (ICP-MS). The water-soluble arsenic species were extracted, and the extract was carried for speciation analysis using HPLC-ICP-MS with an anionic and cationic column. RESULTS: Total As in wild shrimp samples exceeded Brazilian and USA food legislation by one order of magnitude, with concentrations of 11.5 ± 0.5 mg kg-1, while farmed shrimp had significantly lower total arsenic levels (0.53 ± 0.09 mg kg-1). More than 60% of the As was in the edible fraction in the wild shrimp, while in farmed shrimp this was less than 50%. The speciation analysis showed that arsenobetaine (AsB) was the predominant As form and iAs was below the Chinese legislation levels (iAs <0.50 mg kg-1) for shrimp in both species. CONCLUSION: The arsenic uptake in wild and farmed shrimp was discussed and some differences were found related to feed and salinity. About legislation, it has been concluded that most food legislations that consider only tAs are not appropriate to assess the toxicity of As in seafood. It is necessary to update the legislation of food control agencies to insert As speciation analysis in their protocols.


Asunto(s)
Arsénico , Arsenicales , Animales , Humanos , Arsénico/análisis , Brasil , Alimentos Marinos/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos
12.
Transl Psychiatry ; 11(1): 562, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741005

RESUMEN

Autism Spectrum Disorders (ASD) are caused by a combination of genetic predisposition and nongenetic factors. Among the nongenetic factors, maternal immune system activation and zinc deficiency have been proposed. Intriguingly, as a genetic factor, copy-number variations in S100B, a pro-inflammatory damage-associated molecular pattern (DAMP), have been associated with ASD, and increased serum S100B has been found in ASD. Interestingly, it has been shown that increased S100B levels affect zinc homeostasis in vitro. Thus, here, we investigated the influence of increased S100B levels in vitro and in vivo during pregnancy in mice regarding zinc availability, the zinc-sensitive SHANK protein networks associated with ASD, and behavioral outcomes. We observed that S100B affects the synaptic SHANK2 and SHANK3 levels in a zinc-dependent manner, especially early in neuronal development. Animals exposed to high S100B levels in utero similarly show reduced levels of free zinc and SHANK2 in the brain. On the behavioral level, these mice display hyperactivity, increased stereotypic and abnormal social behaviors, and cognitive impairment. Pro-inflammatory factors and zinc-signaling alterations converge on the synaptic level revealing a common pathomechanism that may mechanistically explain a large share of ASD cases.


Asunto(s)
Trastorno del Espectro Autista , Zinc , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Homeostasis , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Embarazo , Subunidad beta de la Proteína de Unión al Calcio S100 , Zinc/metabolismo
13.
Sci Total Environ ; 794: 148735, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323768

RESUMEN

Impact of zero valent iron (Fe°) amendment on grain-yield (GY) and grain-As and Cd accumulation in rice (Oryza sativa L.) cultivars Kilombero and Faya were investigated. Rice plants were amended with Fe° dosages of 0, 3.1, 6.2, and 12.4 g Fe°/kg soil in pots in greenhouse experiments under continuous flooding water regime. GY in each treatment was determined at maturity, grain-As and Cd and arsenic species concentrations were determined using ICP-MS and HPLC tandem ICP-MS respectively. Mean GY in Faya (5.5 ± 1.0 g/plant) and Kilombero (4.2 ± 0.4 g/plant) amended with at least 6.2 g Fe°/kg soil were at least 57% and 22% respectively significantly higher (F = 11; p = 0.003) than that in controls (3.7 ± 0.6 and 3.4 ± 0.4 g/plant). For As bioaccumulation, mean grain-As concentration in Faya T2 (≤227 ± 32 µg/kg) and Kilombero (≤218 ± 25 µg/kg) amended with at least 6.2 g Fe°/kg soil in were at least 83% and 77% respectively significantly lower (F = 7; p = 0.004) than that in controls (973 ± 43 µg/kg and 1278 ± 208 µg/kg). Mean grain-Cd concentrations in Faya (10 ± 2 µg/kg) and Kilombero (13 ± 3 µg/kg) amended with corresponding Fe° dosages were at least 26% and 39% significantly lower (F = 4; p < 0.05) than that in controls (18 ± 3 and 23 ± 1 µg/kg). Results indicated that amending Kilombero with at least 6.2 g/kg Fe° effectively optimally regulated both grain-As and Cd accumulation to values lower than the European Commission's legislated maximum contaminant limits (MCL) of 200 µg/kg without negating grain yield benefits. Our results suggest that bioaccumulation of both As and Cd in rice grains may be completely circumvented by adopting cultivar-specific Fe° amendment dosage.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Arsénico/análisis , Cadmio/análisis , Hierro/análisis , Suelo , Contaminantes del Suelo/análisis
14.
Anal Chem ; 93(16): 6335-6341, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33847492

RESUMEN

Although several per- and polyfluoroalkyl substances (PFAS) have been banned and classified as substances of very high concern by the European Chemicals Agency, similar chemicals remain widely used compounds to date. Even though more than 4700 PFASs may occur in the environment, only 40-50 compounds are routinely determined in targeted analysis by ESI-MS using isotopically labeled standards. Nontargeted analysis using high resolution (HR) molecular mass spectrometry suffers from a lack of data mining algorithms for identification and often low ionization efficiency of the compounds. An additional problem for quantification is the potential lack of suitable species specific standards. Here, we demonstrate the usefulness of a hard ionization source (ICP-MS/MS) as a fluorine-specific detector in combination with ESI-MS for the identification of fluorine containing compounds. Simultaneous hyphenation of HPLC-ICP-MS/MS with HR-ESI-MS is applied to evaluate biodegradation products of organofluorine compounds by sewage sludge. The data are analyzed in a nontarget approach using MZmine. Due to the fluorine-specific detection by ICP-MS/MS, more than 5000 peaks (features) of the ESI-MS were reduced to 15 features. Of these, one was identified as a PFAS degradation compound of fluorotelomer alcohol (8:2 FTOH) without using targeted analysis. The feasibility of the detection of organofluorine metabolites using a fluorine-specific detection was demonstrated using a model compound and can thus be applied to new experiments and unknown organofluorine containing samples in the future.

15.
J Biol Chem ; 296: 100292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453282

RESUMEN

Alzheimer's disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron, and zinc. In AD, a distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau may alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe, and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared with those for the corresponding age- and sex-matched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than did those from the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain and serum of L66 mice compared with WT. For 5xFAD mice, Zn exhibited a trend toward a lighter isotopic composition in the brain and a heavier isotopic composition in serum compared with WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition may serve as a marker for proteinopathies underlying AD and other types of dementia.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Cobre/metabolismo , Hierro/metabolismo , Presenilina-1/genética , Zinc/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fosforilación , Presenilina-1/metabolismo , Agregado de Proteínas/genética , Espectrofotometría Atómica , Transgenes , Proteínas tau/metabolismo
16.
Environ Pollut ; 267: 115629, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254650

RESUMEN

Ingestion of lead (Pb) derived from ammunition used in the hunting of game animals is recognised to be a significant potential source of Pb exposure of wild birds, including birds of prey. However, there are only limited data for birds of prey in Europe regarding tissue concentrations and origins of Pb. Eurasian buzzards (Buteo buteo) found dead in the United Kingdom during an 11-year period were collected and the concentrations of Pb in the liver and femur were measured. Concentrations in the liver consistent with acute exposure to Pb were found in 2.7% of birds and concentration in the femur consistent with exposure to lethal levels were found in 4.0% of individuals. Pb concentration in the femur showed no evidence of consistent variation among or within years, but was greater for old than for young birds. The Pb concentration in the liver showed no effect of the birds' age, but varied markedly among years and showed a consistent tendency to increase substantially within years throughout the UK hunting season for gamebirds. The resemblance of the stable isotope composition of Pb from buzzard livers to that of Pb from the types of shotgun ammunition most widely-used in the UK increased markedly with increasing Pb concentration in the liver. Stable isotope results were consistent with 57% of the mass of Pb in livers of all of the buzzards sampled being derived from shotgun pellets, with this proportion being 89% for the birds with concentrations indicating acute exposure to Pb. Hence, most of the Pb acquired by Eurasian buzzards which have liver concentrations likely to be associated with lethal and sublethal effects is probably obtained when they prey upon or scavenge gamebirds and mammals shot using Pb shotgun pellets.


Asunto(s)
Aves , Plomo , Animales , Europa (Continente) , Humanos , Hígado , Reino Unido
17.
Brain Sci ; 10(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709155

RESUMEN

The essential trace metals iron, zinc, and copper have a significant physiological role in healthy brain development and function. Especially zinc is important for neurogenesis, synaptogenesis, synaptic transmission and plasticity, and neurite outgrowth. Given the key role of trace metals in many cellular processes, it is important to maintain adequate levels in the brain. However, the physiological concentration of trace metals, and in particular zinc, in the human and animal brain is not well described so far. For example, little is known about the trace metal content of the brain of animals outside the class of mammals. Here, we report the concentration of iron, zinc, and copper in fresh brain tissue of different model-species of the phyla Chordata (vertebrates (mammals, fish)), Annelida, Arthropoda (insects), and Mollusca (snails), using inductively coupled plasma mass-spectrometry (ICP-MS). Our results show that the trace metals are present in the nervous system of all species and that significant differences can be detected between species of different phyla. We further show that a region-specific distribution of metals within the nervous system already exists in earthworms, hinting at a tightly controlled metal distribution. In line with this, the trace metal content of the brain of different species does not simply correlate with brain size. We conclude that although the functional consequences of the controlled metal homeostasis within the brain of many species remains elusive, trace metal biology may not only play an important role in the nervous system of mammals but across the whole animal kingdom.

18.
Fungal Biol ; 124(5): 516-524, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389315

RESUMEN

Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50-90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.


Asunto(s)
Hongos , Oligoelementos , Aspergillus fumigatus/química , Candida albicans/química , Cryptococcus neoformans/química , Hongos/química , Saccharomyces cerevisiae/química , Estrés Fisiológico , Oligoelementos/análisis
19.
Metallomics ; 12(5): 794-798, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32232250

RESUMEN

Although fish and seafood are well known for their nutritional benefits, they contain contaminants that might affect human health. Organic lipid-soluble arsenic species, so called arsenolipids, belong to the emerging contaminants in these food items; their toxicity has yet to be systematically studied. Here, we apply the in vivo model Caenorhabditis elegans to assess the effects of two arsenic-containing hydrocarbons (AsHC), a saturated arsenic-containing fatty acid (AsFA), and an arsenic-containing triacylglyceride (AsTAG) in a whole organism. Although all arsenolipids were highly bioavailable in Caenorhabditis elegans, only the AsHCs were substantially metabolized to thioxylated or shortened metabolic products and induced significant toxicity, affecting both survival and development. Furthermore, the AsHCs were several fold more potent as compared to the toxic reference arsenite. This study clearly indicates the need for a full hazard identification of subclasses of arsenolipids to assess whether they pose a risk to human health.


Asunto(s)
Arsénico/toxicidad , Caenorhabditis elegans/crecimiento & desarrollo , Ácidos Grasos/toxicidad , Hidrocarburos/toxicidad , Triglicéridos/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos
20.
Appl Microbiol Biotechnol ; 104(9): 3885-3896, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32140842

RESUMEN

ß-Hydroxy-α-amino acids (ßH-AAs) are key components of many bioactive molecules as well as exist as specialised metabolites. Among these ßH-AAs, 4-fluorothreonine (4-FT) is the only naturally occurring fluorinated AA discovered thus far. Here we report overexpression and biochemical characterisation of 4-fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA), a homologue of FTase previously identified in the biosynthesis of 4-FT in S. cattleya. FTaseMA displays considerable substrate plasticity to generate 4-FT as well as other ß-hydroxy-α-amino acids with various functionalities at C4 position, giving the prospect of new chemo-enzymatic applications. The enzyme has a hybrid of two catalytic domains, serine hydroxymethyltransferase (S) and aldolase (A). Site-directed mutagenesis allowed the identification of the key residues of FTases, suggesting that the active site of A domain has a historical reminiscent feature in metal-dependent aldolases. Elemental analysis demonstrated that FTaseMA is indeed a Zn2+-dependent enzyme, the first example of pyridoxal phosphate (PLP) enzyme family fused with a metal-binding domain carrying out a distinct catalytic role. Finally, FTaseMA showed divergent evolutionary origin with other PLP dependent enzymes.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Streptomyces/enzimología , Streptomyces/genética , Treonina/análogos & derivados , Transaldolasa/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Mutagénesis Sitio-Dirigida , Treonina/metabolismo , Transaldolasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA