Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 15(1): 82-106, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35022998

RESUMEN

This study aimed to isolate lactic acid bacteria (LAB) from the digestive tract, meat and slime of edible snails (Helix lucorum, Helix aspersa and Eobania vermiculata) and investigate their antagonistic activity against Penicillium expansum. They were then characterized for their probiotic potential. Among 900 bacterial isolates, 47 LAB exhibiting anti-P. expansum activity were identified through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as Levilactobacillus brevis (25), Lactococcus lactis (3), Enterococcus faecium (12), Enterococcus faecalis (4), Enterococcus casseliflavus (1), and Enterococcus mundtii (2). Sixty-two percent of the strains were tolerant to 100 mg/L of lysozyme. Seventy two percent of the isolates were able to survive at pH 3 and most of them tolerate 2.5% bile salt concentration. Moreover, 23% of the strains displayed bile salt hydrolase activity. Interestingly, all strains were biofilm strong producers. However, their auto- and co-aggregation properties were time and pH dependent with high aggregative potentiality at pH 4.5 after 24 h. Remarkably, 48.94% of the strains showed high affinity to chloroform. The safety assessment revealed that the 47 LAB had no hemolytic activity and 64% of them lacked mucin degradation activity. All isolated strains were susceptible to gentamycin, streptomycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Overall, 43 LAB strains showed inhibitory activity against a broad spectrum of pathogenic Gram-positive and gram-negative bacteria, fungi, and yeast. Our findings suggest that L. brevis (EVM12 and EVM14) and Ent. faecium HAS34 strains could be potential candidates for probiotics with interesting antibacterial and anti-P. expansum activities.


Asunto(s)
Lactobacillales , Probióticos , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Probióticos/farmacología
2.
Physiol Mol Biol Plants ; 28(7): 1489-1500, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36051230

RESUMEN

Amaranth (Amaranthus caudatus L.), commonly known as "kiwicha", is a pseudo-cereal considered as the crop of future regarding its excellent nutritional value. It has also been suggested as a robust alternative to traditional cereal crops in arid and semi-arid regions where abiotic stresses such as drought and salinity have increased due to climate change. In order to study the seedling behavior and germination dynamics of this species against salinity stress, two amaranth genotypes (Red and Green) were randomly chosen among others and our investigation focused on both morphological and physiological traits. Salt stress was applied for 10 days. Our results show that Red genotype was more tolerant to salinity compared to Green since that the first gave a higher final germination rate and produced higher biomass. Moreover, the germination parameters are less affected in Red compared to those in Green genotype. The radicules of the first genotype accumulated more Na+ compared to those of the second one. Moreover, at low level of salinity (50 mM NaCl), Red genotype showed significant increase in the volatile polyphenol compound content, as well as in the total antioxidant activity, compared to the control (0 mM NaCl). Even if the inhibitory action of the methanoic extracts of both Red and Green genotypes was affected by the salinity, they showed an important activity against P. aeruginosa pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...