Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120046, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139661

RESUMEN

The extremophile lichen Circinaria gyrosa (C. gyrosa) is one of the selected species within the BIOMEX (Biology and Mars Experiment) experiment. Here we present the Raman study of a biohint found in this lichen, called whewellite (calcium oxalate monohydrate), and other organic compounds and mineral products of the biological activity of the astrobiologically relevant model system C. gyrosa. Samples were exposed to space- and simulated Mars-like conditions during the EXPOSE-R2 mission parallel ground reference experiment MGR performed at the space- and planetary chambers of DLR-Cologne to study Mars' habitability and resistance to real space conditions. In this work, we complete the information of natural C. gyrosa about the process of diagenesis by the identification of carbonate crystals in the inner medulla together with the biomineral whewellite. The analysis by Raman spectroscopy of simulated Space and Mars exposed samples confirm alterations and damages of the photobiont part of the lichen and changes related to the molecular structure of whewellite. The conclusions of this work will be important to understand what are the effects to consider when biological systems are exposed to space or Mars-like conditions and to expand our knowledge of how life survives in most extreme conditions that is a prerequisite in future planetary exploration projects.


Asunto(s)
Líquenes , Vuelo Espacial , Ascomicetos , Exobiología , Medio Ambiente Extraterrestre , Espectrometría Raman
2.
Sci Rep ; 7(1): 8775, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821776

RESUMEN

The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.

3.
Astrobiology ; 17(5): 459-469, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28520475

RESUMEN

Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony-a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film. Key Words: BIOlogy and Mars Experiment (BIOMEX)-Kombucha multimicrobial community-Biosignature-Biofilm-Bacterial cellulose. Astrobiology 17, 459-469.


Asunto(s)
Medio Ambiente Extraterrestre , Microbiota , Exobiología , Marte , Vuelo Espacial , Simulación del Espacio , Nave Espacial , Rayos Ultravioleta
4.
Astrobiology ; 15(8): 601-15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26218403

RESUMEN

Samples of the extremotolerant Antarctic endemite lichen Buellia frigida are currently exposed to low-Earth orbit-space and simulated Mars conditions at the Biology and Mars Experiment (BIOMEX), which is part of the ESA mission EXPOSE-R2 on the International Space Station and was launched on 23 July 2014. In preparation for the mission, several preflight tests (Experimental and Scientific Verification Tests, EVT and SVT) assessed the sample preparation and hardware integration procedures as well as the resistance of the candidate organism toward the abiotic stressors experienced under space and Mars conditions. Therefore, we quantified the post-exposure viability with a live/dead staining technique utilizing FUN-1 and confocal laser scanning microscopy (CLSM). In addition, we used scanning electron microscopy (SEM) to investigate putative patterns of morphological-anatomical damage that lichens may suffer under the extreme exposure conditions. The present results demonstrate that Buellia frigida is capable of surviving the conditions tested in EVT and SVT. The mycobiont showed lower average impairment of its viability than the photobiont (viability rates of >83% and >69%, respectively), and the lichen thallus suffered no significant damage in terms of thalline integrity and symbiotic contact. These results will become essential to substantiate and validate the results prospectively obtained from the returning space mission. Moreover, they will help assess the limits and limitations of terrestrial organisms under space and Mars conditions as well as characterize the adaptive traits that confer lichen extremotolerance.


Asunto(s)
Ascomicetos/citología , Ascomicetos/fisiología , Medio Ambiente Extraterrestre , Líquenes/citología , Líquenes/fisiología , Colorantes Fluorescentes , Marte , Viabilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Estrés Fisiológico , Temperatura , Rayos Ultravioleta
5.
Stud Mycol ; 61: 99-109, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19287532

RESUMEN

Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency).

6.
Adv Space Res ; 33(8): 1294-301, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15803617

RESUMEN

The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the evolution and distribution of life.


Asunto(s)
Medio Ambiente Extraterrestre , Protección Radiológica , Vuelo Espacial , Esporas Bacterianas/efectos de la radiación , Rayos Ultravioleta , Bacillus subtilis , Marte , Meteoroides , Suelo , Nave Espacial , Vacio , Ingravidez
7.
Adv Space Res ; 31(6): 1513-24, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12971406

RESUMEN

In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system reacts with a dose-dependent reduction of GFP-fluorescence. Currently, a fully automated miniaturized hardware system for the bacterial set up, which includes measurements of luminescence and fluorescence or absorption and the image analysis based evaluation is under development. During the first mission of the SOS-LUX-LAC-FLUORO-Toxicity-Test on the ISS, a standardized, DNA-damaging radiation source still to be determined will be used as a genotoxic inducer. A panel of recombinant Salmonella typhimurium strains carrying either the SOS-LUX plasmid or the fluorescence-mediating lac-GFPuv plasmid will be used to determine in parallel on one microplate the genotoxic and the cytotoxic action of the applied radiation in combination with microgravity. Either in addition to or in place of the fluorometric measurements of the cytotoxic agents, photometric measurements will simultaneously monitor cell growth, giving additional data on survival of the cells. The obtained data will be available on line during the TRIPLE-LUX mission time. Though it is the main goal during the TRIPLE-LUX mission to measure the radiation effect in microgravity, the SOS-LUX-LAC-FLUORO-Toxicity-test in principle is also applicable as a biomonitor for the detection and measurement of genotoxic substances in air or in the (recycled) water system on the ISS or on earth in general.


Asunto(s)
Radiación Cósmica , Mediciones Luminiscentes , Radiobiología , Respuesta SOS en Genética , Vuelo Espacial , Ingravidez , Daño del ADN , ADN Bacteriano , Relación Dosis-Respuesta en la Radiación , Actividad Extravehicular , Genes Bacterianos , Pruebas de Mutagenicidad , Operón , Plásmidos , Monitoreo de Radiación , Medición de Riesgo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/efectos de la radiación
8.
J Photochem Photobiol B ; 32(3): 189-96, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8622182

RESUMEN

During the Spacelab mission D-2, in the experiment RD-UVRAD, precalibrated biofilms consisting of dry monolayers of immobilised spores of Bacillus subtilis (strain Marburg) were exposed, for defined intervals, to extraterrestrial solar radiation filtered through an optical filtering system, to simulate different ozone column thicknesses. After the mission, the biofilms were processed and optical densities indicative of any biological activity were determined for each exposure condition by image analysis. For the different simulated ozone column thicknesses, biologically effective irradiances were experimentally determined from the biofilm data and compared with calculated data using a radiative transfer model and the known biofilm action spectrum. The data show a strong increase in biologically effective solar UV irradiance with decreasing (simulated) ozone concentrations. The full spectrum of extraterrestrial solar radiation leads to an increment of the biologically effective irradiance by nearly three orders of magnitude compared with the solar spectrum at the surface of the Earth for average total ozone columns.


Asunto(s)
Bacillus subtilis/efectos de la radiación , Ozono , Vuelo Espacial , Luz Solar , Rayos Ultravioleta , Bacillus subtilis/fisiología , Células Inmovilizadas , Relación Dosis-Respuesta en la Radiación , Matemática , Modelos Teóricos , Esporas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...