Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 1632, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967532

RESUMEN

Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. They are widely used as proxies for studying past climate changes, e.g., in isotope records from ice cores and speleothems. Here, we present a new isotopic dataset of both near-surface vapour and ocean surface water from the North Pole to Antarctica, continuously measured from a research vessel throughout the Atlantic and Arctic Oceans during a period of two years. Our observations contribute to a better understanding and modelling of water isotopic composition. The observations reveal that the vapour deuterium excess within the atmospheric boundary layer is not modulated by wind speed, contrary to the commonly used theory, but controlled by relative humidity and sea surface temperature only. In sea ice covered regions, the sublimation of deposited snow on sea ice is a key process controlling the local water vapour isotopic composition.

2.
PLoS One ; 13(1): e0190838, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29304182

RESUMEN

As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.


Asunto(s)
Algoritmos , Color , Regiones Árticas , Clorofila/análisis , Clorofila A , Océanos y Mares , Compuestos Orgánicos/química , Fenómenos Físicos , Solubilidad , Análisis Espectral/métodos
3.
Sci Rep ; 5: 10318, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25993348

RESUMEN

Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.


Asunto(s)
Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Regiones Árticas , Biota , Monitoreo del Ambiente , Cubierta de Hielo , Mercurio/análisis , Océanos y Mares
4.
Science ; 339(6126): 1430-2, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23413190

RESUMEN

In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.


Asunto(s)
Biomasa , Diatomeas , Ecosistema , Cubierta de Hielo , Agua de Mar , Animales , Regiones Árticas , Biodiversidad , Ciclo del Carbono , Cambio Climático , Diatomeas/citología , Diatomeas/crecimiento & desarrollo , Congelación , Sedimentos Geológicos , Pepinos de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA