Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
2.
ACS Appl Bio Mater ; 7(7): 4193-4230, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958361

RESUMEN

Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.


Asunto(s)
Materiales Biocompatibles , Polisacáridos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Polisacáridos/química , Humanos , Ensayo de Materiales , Medicina Regenerativa , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Animales
3.
Nanoscale Adv ; 6(14): 3513-3532, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989508

RESUMEN

MXenes, a class of two-dimensional materials, exhibit considerable potential in wound healing and dressing applications due to their distinctive attributes, including biocompatibility, expansive specific surface area, hydrophilicity, excellent electrical conductivity, unique mechanical properties, facile surface functionalization, and tunable band gaps. These materials serve as a foundation for the development of advanced wound healing materials, offering multifunctional nanoplatforms with theranostic capabilities. Key advantages of MXene-based materials in wound healing and dressings encompass potent antibacterial properties, hemostatic potential, pro-proliferative attributes, photothermal effects, and facilitation of cell growth. So far, different types of MXene-based materials have been introduced with improved features for wound healing and dressing applications. This review covers the recent advancements in MXene-based wound healing and dressings, with a focus on their contributions to tissue regeneration, infection control, anti-inflammation, photothermal effects, and targeted therapeutic delivery. We also discussed the constraints and prospects for the future application of these nanocomposites in the context of wound healing/dressings.

4.
Sci Total Environ ; 946: 173963, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38901599

RESUMEN

Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 µg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Recursos Hídricos , Ecosistema
5.
Sci Total Environ ; 945: 173972, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897477

RESUMEN

The spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removal of heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions, and ion exchange mechanisms. This review focuses on removing heavy metals by hydrochar adsorbents from water bodies. The article discusses factors affecting the adsorption capacity of hydrochars, such as contact time, pH, initial metal concentration, temperature, and competing ions. Literature on optimization approaches such as surface modification, composite development, and hybrid systems are reviewed to enlighten mechanisms undertaking the efficiency of hydrochars in heavy metals removal from wastewater. The review also addresses challenges such as hydrochar regeneration and reusability, alongside potential issues related to its disposal and metal leaching. Integration with current water purification methods and the significance of ongoing research and initiatives promoting hydrochar-based technologies were also outlined. The article concludes that combining hydrochar with modern technologies such as nanotechnology and advanced oxidation techniques holds promise for improving heavy metal remediation. Overall, this comprehensive analysis provides valuable insights to guide future studies and foster the development of effective, affordable, and environmentally friendly heavy metal removal technologies to ensure the attainment of safer drinking water for communities worldwide.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cinética , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
6.
MedComm (2020) ; 5(7): e583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38919334

RESUMEN

Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.

8.
Int J Biol Macromol ; 273(Pt 1): 132579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795895

RESUMEN

Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.


Asunto(s)
Quitosano , Terapia Genética , Ácido Hialurónico , Inmunoterapia , Neoplasias , Fototerapia , Ácido Hialurónico/química , Humanos , Quitosano/química , Neoplasias/terapia , Inmunoterapia/métodos , Terapia Genética/métodos , Fototerapia/métodos , Animales , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Terapia Combinada , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanopartículas/química
9.
Adv Sci (Weinh) ; 11(26): e2401617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713753

RESUMEN

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.


Asunto(s)
Aptámeros de Nucleótidos , ADN , Sistemas de Liberación de Medicamentos , Nanoestructuras , Nanoestructuras/química , Aptámeros de Nucleótidos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , ADN/química
10.
Int J Biol Macromol ; 268(Pt 2): 131829, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677670

RESUMEN

Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.


Asunto(s)
Celulosa , Cicatrización de Heridas , Celulosa/química , Catálisis , Humanos , Cicatrización de Heridas/efectos de los fármacos , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Nanoestructuras/química , Animales , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Vendajes
11.
ACS Biomater Sci Eng ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567981

RESUMEN

The groundbreaking gene-editing mechanism, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), paired with the protein Cas9, has significantly advanced the realms of biology, medicine, and agriculture. Through its precision in modifying genetic sequences, CRISPR holds the potential to alter the trajectory of genetic disorders and accelerate advancements in agriculture. While its therapeutic potential is profound, the technology also invites ethical debates centered on responsible use and equity in access. Parallelly, in the environmental monitoring sphere and sensing in water, especially biosensors have been instrumental in evaluating natural water sources' quality. These biosensors, integrating biological components with detection techniques, have the potential to revolutionize healthcare by providing rapid and minimally invasive diagnostic methods. However, the design and application of these sensors bring forth challenges, especially in ensuring sensitivity, selectivity, and ethical data handling. This article delves into the prospective use of CRISPR-Cas technology for sensing in water, exploring its capabilities in detecting diverse biomarkers, hazardous substances, and varied reactions in water and wastewater systems.

12.
Int J Biol Macromol ; 265(Pt 1): 130899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490375

RESUMEN

The development of biodegradable active packaging films with hydrophobic characteristics is vital for extending the shelf life of food and reducing the reliance on petroleum-based plastics. In this study, novel hydrophobic cerium-based metal-organic framework (Ce-MOF) nanoparticles were successfully synthesized. The Ce-MOF nanoparticles were then incorporated into the cassava starch matrix at varying concentrations (0.5 %, 1.5 %, 3 %, and 4 % w/w of total solid) to fabricate cassava-based active packaging films via the solution casting technique. The influence of Ce-MOF on the morphology, thermal attributes, and physicochemical properties of the cassava film was subsequently determined through further analyses. Biomedical analysis including antioxidant activity and the cellular morphology evaluation in the presence of the films was also conducted. The results demonstrated that the consistent dispersion of Ce-MOF nanofillers within the cassava matrix led to a significant enhancement in the film's crystallinity, thermal stability, antioxidant activity, biocompatibility, and hydrophobicity. The introduction of Ce-MOF also contributed to the film's reduced water solubility. Considering these outcomes, the developed cassava/Ce-MOF films undoubtedly have significant potential for active food packaging applications.


Asunto(s)
Embalaje de Alimentos , Estructuras Metalorgánicas , Embalaje de Alimentos/métodos , Antioxidantes , Permeabilidad , Almidón/química
13.
Crit Rev Clin Lab Sci ; : 1-23, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450458

RESUMEN

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.

14.
Chemosphere ; 353: 141543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447898

RESUMEN

Metal-organic frameworks (MOFs) are highly promising adsorbents with notable properties such as elevated adsorption capacities and versatile surface design capabilities. This study introduces two distinct synthesis methods, one lasting 1 h and the other 24 h, for UiO-66 and NH2-UiO-66. While both methods yield structures with comparable crystallinity and morphology, the adsorption performance of the cationic methylene blue dye varies at different pH levels. Despite the 24 h synthesis time being optimal for maximum adsorption in both MOFs, the relative difference in NH2-UiO-66 adsorption percentage at different times suggests reduced dependency on synthesis time for this property. Notably, NH2-UiO-66 exhibits consistent and effective performance across three pH levels, warranting further investigation into its adsorption kinetics and isotherm. The achievement of high adsorption efficiency coupled with a significantly reduced synthesis time underscores the importance of developing simplified synthetic methods, essential for enhancing the practical applicability of MOFs in diverse applications.


Asunto(s)
Estructuras Metalorgánicas , Azul de Metileno , Ácidos Ftálicos , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
15.
Chemosphere ; 346: 140579, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303391

RESUMEN

Molybdenum-doped BiVO4 thin films were uniformly coated on indium-doped tin oxide (ITO) substrates via a facile modified hot spin coating (HSC) technique. The prepared layers were used as photoanode in a photoelectrochemical (PEC) cell. Different percentage of Mo dopant was examined to maximize the photo-current density (J) of the layers. The highest J value (872 ± 8 µA/cm2) was obtained by 5 atomic% of Mo doping. After that, the surface topographies of these samples were changed by varying the initial precursor concentration from 27 to 80 mM. The relation between surface topographies and the PEC activity of Mo-doped BiVO4 thin films was investigated from microscopic point of view by calculating the surface roughness exponent of α, and a mechanism for the PEC activity of Mo-doped BiVO4 photoanodes was proposed accordingly. The sample with a small roughness exponent provided a surface with jagged microscopic fluctuations which may trap the air molecules between the electrolyte and sample surface, hindering the fine atomic interaction for photo-generated electron-hole transition. Therefore, the layer with the highest roughness exponent (2α = 0.48 ± 0.03), which means the smoother microscopic surface and better interfacial contact with the electrolyte, exhibited the best PEC activity.


Asunto(s)
Electrones , Molibdeno , Compuestos de Estaño , Programas Informáticos , Electrólitos
16.
ACS Biomater Sci Eng ; 10(3): 1262-1301, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38376103

RESUMEN

The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.


Asunto(s)
Tecnología Biomédica , Tecnología Inalámbrica
17.
Nanoscale Adv ; 6(3): 747-776, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298588

RESUMEN

There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.

18.
J Mater Chem B ; 12(4): 895-915, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194290

RESUMEN

MXenes are a class of two-dimensional (2D) materials that have gained significant attention in the field of electronic skins (E-skins). MXene-based composites offer several advantages for E-skins, including high electrical conductivity, mechanical flexibility, transparency, and chemical stability. Their mechanical flexibility allows for conformal integration onto various surfaces, enabling the creation of E-skins that can closely mimic human skin. In addition, their high surface area facilitates enhanced sensitivity and responsiveness to external stimuli, making them ideal for sensing applications. Notably, MXene-based composites can be integrated into E-skins to create sensors that can detect various stimuli, such as temperature, pressure, strain, and humidity. These sensors can be used for a wide range of applications, including health monitoring, robotics, and human-machine interfaces. However, challenges related to scalability, integration, and biocompatibility need to be addressed. One important challenge is achieving long-term stability under harsh conditions such as high humidity. MXenes are susceptible to oxidation, which can degrade their electrical and mechanical properties over time. Another crucial challenge is the scalability of MXene synthesis, as large-scale production methods need to be developed to meet the demand for commercial applications. Notably, the integration of MXenes with other components, such as energy storage devices or flexible electronics, requires further developments to ensure compatibility and optimize overall performance. By addressing issues related to material stability, mechanical flexibility, scalability, sensing performance, and power supply, MXene-based E-skins can develop the fields of healthcare monitoring/diagnostics, prosthetics, motion monitoring, wearable electronics, and human-robot interactions. The integration of MXenes with emerging technologies, such as artificial intelligence or internet of things, can unlock new functionalities and applications for E-skins, ranging from healthcare monitoring to virtual reality interfaces. This review aims to examine the challenges, advantages, and limitations of MXenes and their composites in E-skins, while also exploring the future prospects and potential advancements in this field.


Asunto(s)
Inteligencia Artificial , Miembros Artificiales , Nitritos , Elementos de Transición , Humanos , Conductividad Eléctrica , Electrónica
19.
ACS Biomater Sci Eng ; 10(2): 657-676, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241520

RESUMEN

The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.


Asunto(s)
Microfluídica , Nitritos , Elementos de Transición
20.
ACS Omega ; 9(1): 1183-1195, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222665

RESUMEN

Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...