Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 361: 142546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849101

RESUMEN

Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.


Asunto(s)
Microplásticos , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Plásticos/análisis , Plásticos/química , Monitoreo del Ambiente/métodos
2.
Chemosphere ; 358: 142156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679172

RESUMEN

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Asunto(s)
Biopelículas , Reactores Biológicos , Nitrificación , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Purificación del Agua/métodos , Cinética , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Microbiota , Nitritos/metabolismo , Bacterias/metabolismo , Bacterias/genética , ARN Ribosómico 16S/genética , Nitratos/metabolismo
3.
Sci Total Environ ; 832: 155067, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395310

RESUMEN

Pollution in raw water poses increasing threats to safe water supply in many developing countries. Therefore, a comprehensive water quality assessment is essential to provide various stakeholders the information to deal with this problem. This study applies chemometrics to interpret a recent 10-year water quality data from three major river basins (Selangor River basin, Langat River basin, and Klang River basin) frequented by water supply disruptions in Selangor, Malaysia. We present the application of selected chemometrics approaches, namely agglomerative hierarchical cluster analysis, principal component analysis, factor analysis and Man-Kendall trend analysis. The results showed three spatial groups of monitoring stations with similar land use practices and pollution characteristics. Besides spatial differences, periodic variations were observed when similar pollutants exhibited different pollution loads during rainy and dry periods. We found that nitrogen species, total suspended solids, and dissolved solids represented the major pollution loads in the studied basins. The results further confirmed a significant increasing trend in ammonia pollution. Our study demonstrates how ammonia pollutant is likely to pose a threat to water supply and highlights the vulnerability of Selangor's water resource system to water pollution. The results of this study could facilitate decision making towards more holistic strategies, specifically, incorporating ammonia treatment facilities into the conventional water treatment plant will help achieve smooth water supply operations.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Amoníaco , Monitoreo del Ambiente/métodos , Humanos , Malasia , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Calidad del Agua , Abastecimiento de Agua
4.
Water Sci Technol ; 72(9): 1611-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26524453

RESUMEN

The effectiveness of combined nanofiltration and disinfection processes was studied by comparing the pre-disinfection and post-disinfection when in combination with nanofiltration. Four types of sulfonamide (sulfanilamide, sulfadiazine, sulfamethoxazole, and sulfadimethoxine) were chosen as substrates, with sodium hypochlorite as a disinfectant. A laboratory-scale nanofiltration system was used to conduct the following sets of experiment: (1) a pre-chlorination system, where the free active chlorine (FAC) was added to the membrane influent; and (2), a post-chlorination system, where the FAC was added to the membrane effluent. Overall, the pre-disinfection nanofiltration system showed higher sulfonamide removal efficiency compared to the post-chlorination nanofiltration system (>99.5% versus >89.5%). In the case of limited FAC ([FAC]0: [sulfonamide]0≤1), the removal efficiency for the post-chlorination nanofiltration system was higher, due to the prior nanofiltration process that could remove 12.5% to 80% of sulfonamide. The flux of the treated feed system was considerably higher than in the untreated feed system; however, the membrane was observed to be slightly damaged due to residual chlorine attack.


Asunto(s)
Filtración , Halogenación , Sulfonamidas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Antibacterianos , Cloro , Desinfectantes , Desinfección , Membranas Artificiales , Sulfametoxazol , Sulfonamidas/química , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...