Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chronobiol Int ; 39(1): 129-150, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965824

RESUMEN

The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.


Asunto(s)
Camelus , Ritmo Circadiano , Animales , Femenino , Locomoción , Fotoperiodo , Estaciones del Año
2.
Chronobiol Int ; 36(8): 1047-1057, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31088178

RESUMEN

Daily pattern of locomotor activity (LA), one of the most studied rhythms in humans and rodents, has not been widely investigated in large mammals. This is partly due to the high cost and breakability of used automatic devices. Since last decade, smartphones are becoming ubiquitous. Meanwhile, several applications detecting activity by using internal sensors were made available. In this study, we assumed that this device could be a cheaper and easier way to measure the LA rhythm in humans and large mammals, like camel and goat. A smartphone application (Nokia Mate Health), normally used to quantify physical activities in humans, was chosen for the study. To validate the rhythm data obtained from the smartphone, LA rhythm was simultaneously recorded using an automatic device, the Actiwatch-Mini®. Results showed that the smartphone provided a clear and significant daily rhythm of LA. The visual assessment of the superimposed LA rhythm's curves in all three species showed that the smartphone application displayed similar rhythms as those recorded by the Actiwatch-Mini. Highly significant positive correlation (p≤ 0.0001) exists between the two recording rhythms. The daily periods were both the same at 24.0 h. Acrophases were also significantly similar and occurring around mid-day: 11:40 ± 0.35 h vs 11:41 ± 0.35 h for the camel, 11:25 ± 0.19 h vs 11:37 ± 0.25 h for the goat and 13:04 ± 0.11 h vs 13:51 ± 0.28 h for humans using smartphone and Actiwatch, respectively. The related mesor and amplitude were also close between the two recording devices. Results indicate clearly that using smartphones constitutes a reliable cheap tool to study LA rhythm for chronobiology studies, especially in laboratories facing lack of funding.


Asunto(s)
Camelus/fisiología , Ritmo Circadiano/fisiología , Cabras/fisiología , Locomoción/fisiología , Teléfono Inteligente , Programas Informáticos , Animales , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...