Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 211(1): 71-80, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195219

RESUMEN

B cell development requires the ordered rearrangement of Ig genes encoding H and L chain proteins that assemble into BCRs or Abs capable of recognizing specific Ags. Igκ rearrangement is promoted by chromatin accessibility and by relative abundance of RAG1/2 proteins. Expression of the E26 transformation-specific transcription factor Spi-C is activated in response to dsDNA double-stranded breaks in small pre-B cells to negatively regulate pre-BCR signaling and Igκ rearrangement. However, it is not clear if Spi-C regulates Igκ rearrangement through transcription or by controlling RAG expression. In this study, we investigated the mechanism of Spi-C negative regulation of Igκ L chain rearrangement. Using an inducible expression system in a pre-B cell line, we found that Spi-C negatively regulated Igκ rearrangement, Igκ transcript levels, and Rag1 transcript levels. We found that Igκ and Rag1 transcript levels were increased in small pre-B cells from Spic-/- mice. In contrast, Igκ and Rag1 transcript levels were activated by PU.1 and were decreased in small pre-B cells from PU.1-deficient mice. Using chromatin immunoprecipitation analysis, we identified an interaction site for PU.1 and Spi-C located in the Rag1 promoter region. These results suggest that Spi-C and PU.1 counterregulate Igκ transcription and Rag1 transcription to effect Igκ recombination in small pre-B cells.


Asunto(s)
Cadenas kappa de Inmunoglobulina , Células Precursoras de Linfocitos B , Ratones , Animales , Células Precursoras de Linfocitos B/metabolismo , Cadenas kappa de Inmunoglobulina/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Recombinación Genética
2.
Immunohorizons ; 6(1): 104-115, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285436

RESUMEN

Spi-C is an E26 transformation-specific transcription factor closely related to PU.1 and Spi-B. Spi-C has lineage-instructive functions important in B cell development, Ab-generating responses, and red pulp macrophage generation. This research examined the regulation of Spi-C expression in mouse B cells. To determine the mechanism of Spic regulation, we identified the Spic promoter and upstream regulatory elements. The Spic promoter had unidirectional activity that was reduced by mutation of an NF-κB binding site. Reverse transcription-quantitative PCR analysis revealed that Spic expression was reduced in B cells following treatment with cytokines BAFF + IL-4 + IL-5, anti-IgM Ab, or LPS. Cytochalasin treatment partially prevented downregulation of Spic. Unstimulated B cells upregulated Spic on culture. Spic was repressed by an upstream regulatory region interacting with the heme-binding regulator Bach2. Taken together, these data indicate that Spi-C is dynamically regulated by external signals in B cells and provide insight into the mechanism of regulation.

3.
WIREs Mech Dis ; 13(5): e1519, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34730294

RESUMEN

Cell fate decisions during hematopoiesis are the consequence of a complex mixture of inputs from cell-intrinsic and cell-extrinsic factors. In rare cases, expression of a single transcription factor, or a few key factors, may be sufficient to dictate lineage differentiation in a precursor cell. The E26-transformation-specific-family transcription factor Spi-C has emerged as an example of a lineage-instructive factor involved in the generation of mature, specialized subsets of both myeloid and lymphoid cells. Spi-C can instruct differentiation of splenic precursors into red pulp macrophages responsible for phagocytosing senescent red blood cells. In the B cell compartment, Spi-C acts as a key regulator of cell fate decisions at the pro-B to pre-B cell stage and for plasma cell differentiation. Spi-C regulates key genes including Nfkb1, Bach2, Syk, and Blnk to regulate cell cycle entry and B cell differentiation. Here, we review the biology of the lineage-instructive transcription factor Spi-C and its contribution to mechanisms of disease in macrophages and B cells. This article is categorized under: Cancer > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Animales , Linfocitos B/metabolismo , Diferenciación Celular , Ratones , Ratones Noqueados , Factores de Transcripción/genética
4.
Front Immunol ; 11: 841, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457757

RESUMEN

Generation of specific antibodies during an immune response to infection or vaccination depends on the ability to rapidly and accurately select clones of antibody-secreting B lymphocytes for expansion. Antigen-specific B cell clones undergo the cell fate decision to differentiate into antibody-secreting plasma cells, memory B cells, or germinal center B cells. The E26-transformation-specific (ETS) transcription factors Spi-B and Spi-C are important regulators of B cell development and function. Spi-B is expressed throughout B cell development and is downregulated upon plasma cell differentiation. Spi-C is highly related to Spi-B and has similar DNA-binding specificity. Heterozygosity for Spic rescues B cell development and B cell proliferation defects observed in Spi-B knockout mice. In this study, we show that heterozygosity for Spic rescued defective IgG1 secondary antibody responses in Spib-/- mice. Plasma cell differentiation was accelerated in Spib-/- B cells. Gene expression, ChIP-seq, and reporter gene analysis showed that Spi-B and Spi-C differentially regulated Bach2, encoding a key regulator of plasma cell and memory B cell differentiation. These results suggest that Spi-B and Spi-C oppose the function of one another to regulate B cell differentiation and function.


Asunto(s)
Linfocitos B/inmunología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/inmunología , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/inmunología , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-ets/metabolismo , Bazo/citología , Bazo/inmunología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...