Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042710

RESUMEN

Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.

2.
Nano Lett ; 23(12): 5617-5624, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289519

RESUMEN

High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe2-to-MoS2 with an interlayer hexagonal boron nitride (hBN), due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission. This type of unconventional ET from the lower-to-higher optical bandgap material is not typical in the TMD HSs. With increasing temperature, the ET process becomes weaker due to the increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.

3.
Sci Rep ; 12(1): 17324, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243749

RESUMEN

Differences in hatching dates can shape intraspecific interactions through size-mediated priority effects (SMPE), a phenomenon where bigger, early hatched individuals gain advantage over smaller, late hatched ones. However, it remains unclear to what extent and how SMPE are affected by key environmental factors such as warming and predation risk imposed by top predators. We studied effects of warming (low and high temperature) and predation risk (presence and absence of predator cues of perch) on SMPE in life history and physiological traits in the cannibalistic damselfly Ischnura elegans. We induced SMPE in the laboratory by manipulating hatching dates, creating following groups: early and late hatchlings reared in separate containers, and mixed phenology groups where early and late hatchlings shared the same containers. We found strong SMPE for survival and emergence success, with the highest values in early larvae of mixed phenology groups and the lowest values in late larvae of mixed phenology groups. Neither temperature nor predator cues affected SMPE for these two traits. The other life history traits (development rate and mass at emergence) did not show SMPE, but were affected by temperature and predator cues. A tendency for SMPE was found for protein content, in the high temperature treatment. The other physiological traits (phenoloxidase activity and fat content) showed fixed expressions across treatments, indicating decoupling between physiology and life history. The results underline that SMPEs are trait-dependent, and only weakly or not affected by temperature and predation risk.


Asunto(s)
Odonata , Conducta Predatoria , Animales , Canibalismo , Larva/fisiología , Monofenol Monooxigenasa , Odonata/fisiología
4.
Insects ; 13(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35886798

RESUMEN

Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.

5.
Environ Sci Pollut Res Int ; 28(27): 35317-35326, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34100204

RESUMEN

The anthropogenic pressure on the environment depends on the spatial scale. It is crucial to prioritise conservation actions at different spatial scales to be cost-efficient. Using horizon scanning with the Delphi technique, we asked what the most important conservation problems are in Poland at local and national scales. Twenty-six participants, PhD students, individually identified conservation issues important at the local and national scales. Each problem was then scored and classified into broader categories during the round discussions. Text mining, cross-sectional analyses, and frequency tests were used to compare the context, importance scores, and frequency of identified problems between the two scales, respectively. A total of 115 problems were identified at the local scale and 122 at the national scale. Among them, 30 problems were identical for both scales. Importance scores were higher for national than local problems; however, this resulted from different sets of problems identified at the two scales. Problems linked to urbanisation, education, and management were associated with the local scale. Problems related to policy, forestry, and consumerism were more frequent at the national scale. An efficient conservation policy should be built hierarchically (e.g. introducing adaptive governance), implementing solutions at a national scale with the flexibility to adjust for local differences and to address the most pressing issues.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Biodiversidad , Estudios Transversales , Humanos , Polonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...