Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 251: 154849, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837858

RESUMEN

AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Óseas/metabolismo , Carcinogénesis , Carcinógenos , Recurrencia Local de Neoplasia , Osteosarcoma/metabolismo , Calidad de Vida
2.
Phytopathology ; 113(10): 1924-1933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37261424

RESUMEN

Managing pathogen damage in wheat production is important for sustaining yields. Fungal plant pathogen genomes encode many small secreted proteins acting as effectors that play key roles in the successful colonization of host tissue and triggering host defenses. AvrStb6 is the first described Zymoseptoria tritici avirulence effector, which triggers Stb6-mediated immunity in the wheat host in a gene-for-gene manner. Evasion of major resistance factors such as Stb6 challenges deployment decisions on wheat cultivars. In this study, we analyzed the evolution of the AvrStb6 effector in Iranian isolates of Z. tritici. In total, 78 isolates were isolated and purified from 30 infected wheat specimens collected from the East Azerbaijan and Ardabil provinces of Iran. The pathogenicity of all isolates was evaluated on the susceptible wheat cultivar 'Tajan'. A subset of 40 isolates were also tested for pathogenicity on the resistant cultivar 'Shafir' carrying Stb6. Genetic diversity at the AvrStb6 locus was analyzed for 14 isolates covering the breadth of the observed disease severity. The AvrStb6 sequence variation was high, with virulent isolates carrying highly diverse AvrStb6 haplotypes. In an analysis including more than 1,000 additional AvrStb6 sequences from a global set of isolates, we found that virulent isolates carried AvrStb6 haplotypes either clustering with known virulent haplotypes on different continents or constituting previously unknown haplotypes. Furthermore, we found that AvrStb6 variants from avirulent isolates clustered with known avirulent genotypes from Europe. Our study highlights the relevance of AvrStb6 for Z. tritici virulence and the exceptional global diversity patterns of this effector.


Asunto(s)
Variación Genética , Enfermedades de las Plantas , Irán , Virulencia/genética , Enfermedades de las Plantas/microbiología
3.
Front Microbiol ; 13: 1024001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419433

RESUMEN

Endophytic fungi are microorganisms with the ability to colonize plants for the entire or at least a significant part of their life cycle asymptomatically, establishing a plant-fungus association. They play an important role in balancing ecosystems, as well as benefiting host through increasing plant growth, and protecting the host plants from abiotic and biotic stresses using various strategies. In the present study, endophytic fungi were isolated from wild and endemic apple cultivars, followed by characterizing their antifungal effect against Venturia inaequalis. To characterize the endophytic fungi, 417 fungal strains were separated from 210 healthy fruit, leaf, and branch samples collected from the north of Iran. Among the purified fungal isolates, 33 fungal genera were identified based on the morphological characteristics, of which 38 species were detected according to the morphological features and molecular data of ITS, tef-1α, and gapdh genomic regions (related to the genus). The results represented that most of the endophytic fungi belonged to Ascomycota (67.8%), 31.4% of isolates were mycelia sterilia, while the others were Basidiomycota (0.48%) and Mucoromycota (0.24%). Additionally, Alternaria, Cladosporium, and Nigrospora were determined as the dominant genera. The antifungal properties of the identified isolates were evaluated against V. inaequalis in vitro to determine the release of media-permeable metabolites, Volatile Organic Compounds (VOCs), chitinase, and cellulase as antifungal mechanisms, as well as producing phosphate solubilisation as growth-promoting effect. Based on the results of metabolite and VOC tests, the six isolates of Acremonium sclerotigenum GO13S1, Coniochaeta endophytica 55S2, Fusarium lateritium 61S2, Aureobasidium microstictum 7F2, Chaetomium globosum 2S1 and Ch. globosum 3 L2 were selected for greenhouse tests. Further, Co. endophytica 55S2 and F. lateritium 61S2 could solubilize inorganic phosphate. All isolates except Ch. globosum 3 L2 exhibited cellulase activity, while chitinase activity was observed in Ch. globosum 2S1, Ch. globosum 3 L2, and F. lateritium 61S2. Finally, Co. endophytica 55S2 and Ch. globosum 2S1 completely controlled the disease on the apple seedling leaves under greenhouse conditions.

4.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 8): o2466, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22904909

RESUMEN

In the crystal structure of the title compound, C(14)H(12)BrNO(2), the dihedral angle between the rings is 37.87 (10)° and the mol-ecule has an E conformation about the central C=N bond. In the crystal, mol-ecules are connected by inter-molecular O-H⋯N hydrogen bonds into zigzag chains running parallel to the b axis. The packing also features C-H⋯O inter-actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...