Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Eng Mater ; 1(3): 947-954, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37008885

RESUMEN

Electrochemically exfoliated graphene (e-G) thin films on Nafion membranes exhibit a selective barrier effect against undesirable fuel crossover. This approach combines the high proton conductivity of state-of-the-art Nafion and the ability of e-G layers to effectively block the transport of methanol and hydrogen. Nafion membranes are coated with aqueous dispersions of e-G on the anode side, making use of a facile and scalable spray process. Scanning transmission electron microscopy and electron energy-loss spectroscopy confirm the formation of a dense percolated graphene flake network, which acts as a diffusion barrier. The maximum power density in direct methanol fuel cell (DMFC) operation with e-G-coated Nafion N115 is 3.9 times higher than that of the Nafion N115 reference (39 vs 10 mW cm-2@0.3 V) at a 5M methanol feed concentration. This suggests the application of e-G-coated Nafion membranes for portable DMFCs, where the use of highly concentrated methanol is desirable.

2.
Inorg Chem ; 61(5): 2379-2390, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34807595

RESUMEN

Transition-metal phosphates show a wide range of chemical compositions, variations of the valence states, and crystal structures. They are commercially used as solid-state catalysts, cathode materials in rechargeable batteries, or potential candidates for proton-exchange membranes in fuel cells. Here, we report on the successful ab initio structure determination of two novel titanium pyrophosphates, Ti(III)p and Ti(IV)p, from powder X-ray diffraction (PXRD) data. The low-symmetry space groups P21/c for Ti(III)p and P1̅ for Ti(IV)p required the combination of spectroscopic and diffraction techniques for structure determination. In Ti(III)p, trivalent titanium ions occupy the center of TiO6 polyhedra, coordinated by five pyrophosphate groups, one of them as a bidentate ligand. This secondary coordination causes the formation of one-dimensional six-membered ring channels with a diameter dmax of 3.93(2) Å, which is stabilized by NH4+ ions. Annealing Ti(III)p in inert atmospheres results in the formation of a new compound, denoted as Ti(IV)p. The structure of this compound shows a similar three-dimensional framework consisting of [PO4]3- tetrahedra and TiIV+O6 octahedra and an empty one-dimensional channel with a diameter dmax of 5.07(1) Å. The in situ PXRD of the transformation of Ti(III)p to Ti(IV)p reveals a two-step mechanism, i.e., the decomposition of NH4+ ions in a first step and subsequent structure relaxation. The specific proton conductivity and activation energy of the proton migration of Ti(III)p, governed by the Grotthus mechanism, belong to the highest and lowest, respectively, ever reported for this class of materials, which reveals its potential application in electrochemical devices like fuel cells and water electrolyzers in the intermediate temperature range.

3.
Beilstein J Nanotechnol ; 11: 1419-1431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014682

RESUMEN

Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...