Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Intervalo de año de publicación
1.
ACS Omega ; 8(23): 20404-20411, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323413

RESUMEN

Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH). Isotropic 5CB/RM257-rich droplets were generated by cooling below the binodal curve (20 °C), and the isotropic-to-nematic transition occurred after cooling below 0 °C. The resulting 5CB/RM257-rich droplets with radial configuration were subsequently polymerized under UV light, resulting in nematic microparticles. Upon heating the mixture, the 5CB mesogens underwent a nematic-isotropic transition and eventually became homogeneous with MeOH, while the polymerized RM257 preserved its radial configuration. Repeated cycles of cooling and heating resulted in swelling and shrinking of the porous microparticles. The use of a reversible materials templating approach to obtain porous microparticles provides new insights into binary liquid manipulation and potential for microparticle production.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38197035

RESUMEN

This paper assesses and reports the experience of ten teams working to port, validate, and benchmark several High Performance Computing applications on a novel GPU-accelerated Arm testbed system. The testbed consists of eight NVIDIA Arm HPC Developer Kit systems, each one equipped with a server-class Arm CPU from Ampere Computing and two data center GPUs from NVIDIA Corp. The systems are connected together using InfiniBand interconnect. The selected applications and mini-apps are written using several programming languages and use multiple accelerator-based programming models for GPUs such as CUDA, OpenACC, and OpenMP offloading. Working on application porting requires a robust and easy-to-access programming environment, including a variety of compilers and optimized scientific libraries. The goal of this work is to evaluate platform readiness and assess the effort required from developers to deploy well-established scientific workloads on current and future generation Arm-based GPU-accelerated HPC systems. The reported case studies demonstrate that the current level of maturity and diversity of software and tools is already adequate for large-scale production deployments.

3.
ACS Appl Mater Interfaces ; 14(1): 2092-2101, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964620

RESUMEN

The electrode drying process (DP) is a crucial step in the lithium-ion battery manufacturing chain and plays a fundamental role in governing the performance of the cells. The DP is extremely complex, with the dynamics and their implication in the production of electrodes generally being poorly understood. To date, there is limited discussion of these processes in the literature due to the limitation of the existing in situ metrology. Here, ultrasound acoustic measurements are demonstrated as a promising tool to monitor the physical evolution of the electrode coating in situ. These observations are validated by gravimetric analysis to show the feasibility of the technique to monitor the DP and identify the three different drying stages. A possible application of this technique is to adjust the drying rates based upon the ultrasound readings at different drying stages and to speed up the drying time. These findings prove that this measurement can be used as a cost-effective and simple tool to provide characteristic diagnostics of the electrode, which can be applied in large-scale coating manufacturing.

4.
Ind Eng Chem Res ; 60(29): 10489-10501, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34349342

RESUMEN

The volumetric liquid-solid (L-S) mass transfer coefficient under gas-liquid (G-L) two-phase flow in a silicon-chip-based micropacked bed reactor (MPBR) was studied using the copper dissolution method and was related to the reactor hydrodynamic behavior. Using a high-speed camera and a robust computational image analysis method that selectively analyzed the bed voidage around the copper particles, the observed hydrodynamics were directly related to the L-S mass transfer rates in the MPBR. This hydrodynamic study revealed different pulsing structures inside the packed copper bed depending on the flow patterns established preceding the packed bed upon increasing gas velocity. A "liquid-dominated slug" flow regime was associated with an upstream slug flow feed. A "sparse slug" flow regime developed with an upstream slug-annular flow feed. At higher gas velocity, a "gas continuous with pulsing" regime developed with an annular flow feed, which had similar features to the pulsing flow in macroscale packed beds, but it was sensitive and easily destabilized by disturbances from upstream or downstream pressure fluctuations. The volumetric L-S mass transfer coefficient decreased with increasing gas velocity under the liquid-dominated slug flow regime and became rather less affected under the sparse slug flow regime. By resolving the transition from the liquid-dominated slug flow to the sparse slug flow and capturing the onset of the gas-continuous with pulsing regime, we gained new insights into the hydrodynamic effects of G-L flows on the L-S mass transfer rates in a MPBR.

5.
ACS Appl Mater Interfaces ; 13(30): 36605-36620, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34293855

RESUMEN

The electrode drying process is a crucial step in the manufacturing of lithium-ion batteries and can significantly affect the performance of an electrode once stacked in a cell. High drying rates may induce binder migration, which is largely governed by the temperature. Additionally, elevated drying rates will result in a heterogeneous distribution of the soluble and dispersed binder throughout the electrode, potentially accumulating at the surface. The optimized drying rate during the electrode manufacturing process will promote balanced homogeneous binder distribution throughout the electrode film; however, there is a need to develop more informative in situ metrologies to better understand the dynamics of the drying process. Here, ultrasound acoustic-based techniques were developed as an in situ tool to study the electrode drying process using NMC622-based cathodes and graphite-based anodes. The drying dynamic evolution for cathodes dried at 40 and 60 °C and anodes dried at 60 °C were investigated, with the attenuation of the reflective acoustic signals used to indicate the evolution of the physical properties of the electrode-coating film. The drying-induced acoustic signal shifts were discussed critically and correlated to the reported three-stage drying mechanism, offering a new mode for investigating the dynamic drying process. Ultrasound acoustic-based measurements have been successfully shown to be a novel in situ metrology to acquire dynamic drying profiles of lithium-ion battery electrodes. The findings would potentially fulfil the research gaps between acquiring dynamic data continuously for a drying mechanism study and the existing research metrology, as most of the published drying mechanism research studies are based on simulated drying processes. It shows great potential for further development and understanding of the drying process to achieve a more controllable electrode manufacturing process.

6.
Knee Surg Sports Traumatol Arthrosc ; 29(11): 3892-3898, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33521890

RESUMEN

PURPOSE: The management of meniscal tears is a widely researched and evolving field. Previous studies reporting the incidence of meniscal tears are outdated and not representative of current practice. The aim of this study was to report the current incidence of MRI confirmed meniscal tears in patients with a symptomatic knee and the current intervention rate in a large NHS trust. METHODS: Radiology reports from 13,358 consecutive magnetic resonance imaging scans between 2015 and 2017, performed at a large UK hospital serving a population of 470,000, were assessed to identify patients with meniscal tears. The hospital database was interrogated to explore the subsequent treatment undertaken by the patient. A linear regression model was used to identify if any factors predicted subsequent arthroscopy. RESULTS: 1737 patients with isolated meniscal tears were identified in patients undergoing an MRI for knee pain, suggesting a rate of 222 MRI confirmed tears per 100,000 of the population aged 18 to 55 years old. 47% attended outpatient appointments and 22% underwent arthroscopy. Root tears [odds ratio (95% CI) 2.24 (1.0, 4.49); p = 0.049] and bucket handle tears were significantly associated with subsequent surgery, with no difference between the other types of tears. The presence of chondral changes did not significantly affect the rate of surgery [0.81 (0.60, 1.08); n.s]. CONCLUSION: Meniscal tears were found to be more common than previously described. However, less than half present to secondary care and only 22% undergo arthroscopy. These findings should inform future study design and recruitment strategies. In agreement with previous literature, bucket handle tears and root tears were significant predictors of subsequent surgery. LEVEL OF EVIDENCE: III.


Asunto(s)
Traumatismos de la Rodilla , Lesiones de Menisco Tibial , Adolescente , Adulto , Artroscopía , Humanos , Traumatismos de la Rodilla/diagnóstico , Traumatismos de la Rodilla/epidemiología , Traumatismos de la Rodilla/cirugía , Imagen por Resonancia Magnética , Meniscos Tibiales , Persona de Mediana Edad , Estudios Retrospectivos , Lesiones de Menisco Tibial/diagnóstico por imagen , Lesiones de Menisco Tibial/epidemiología , Lesiones de Menisco Tibial/cirugía , Adulto Joven
7.
Elife ; 102021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410747

RESUMEN

The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.


Asunto(s)
Adaptación Biológica/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Ambiente , Salmonella typhimurium/fisiología , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Salmonella typhimurium/genética
8.
Soft Matter ; 17(4): 947-954, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33284300

RESUMEN

Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4'-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.

9.
J Craniofac Surg ; 31(6): 1672-1677, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32740313

RESUMEN

CONTEXT: The fair comparison of treatment interventions for craniosynostosis across different studies is expected to be impaired by incomplete reporting and the use of inconsistent outcomes. OBJECTIVE: This review assessed the outcomes currently reported in studies of craniosynostosis, and whether these outcomes are formally defined and prespecified in the study methods. DATA SOURCES, SEARCH TERMS, AND STUDY SELECTION: Studies were sourced via an electronic, multi-database literature search for "craniosynostosis." All primary, interventional research studies published from 2011 to 2015 were reviewed. DATA EXTRACTION: Two independent researchers assessed each study for inclusion and performed the data extraction. For each study, data were extracted on the individual outcomes reported, and whether these outcomes were defined and prespecified in the methods. DATA SYNTHESIS AND RESULTS: Of 1027 studies screened, 240 were included and proceeded to data extraction. These studies included 18,365 patients.2192 separate outcomes were reported. Of these, 851 outcomes (38.8%) were clearly defined, 1394 (63.6%) were prespecified in the study methods."Clinical and functional" was the most commonly reported outcome theme (900 outcomes, 41.1%), and "patient-reported" outcomes the least (7 outcomes, 0.3%)."Duration of surgery" was the most commonly reported single outcome (reported 80 times). "Cranial index" was the most variably defined outcome (18 different definitions used). CONCLUSION: The outcomes reported following treatment interventions for craniosynostosis are incompletely and variably defined. Improving definitions for these outcomes may aid comparison of different management strategies and improve craniosynostosis care. Suboptimal prespecification of these outcomes in the study methods implied that outcome reporting bias cannot be excluded.


Asunto(s)
Craneosinostosis , Humanos , Evaluación de Resultado en la Atención de Salud
10.
Langmuir ; 35(25): 8199-8209, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31184901

RESUMEN

Capillary microseparators have been gaining interest in downstream unit operations, especially for pharmaceutical, space, and nuclear applications, offering efficient separation of two-phase flows. In this work, a detailed analysis of the dynamics of gas?liquid separation at the single meniscus level helped to formulate a model to map the operability region of microseparation devices. A water?nitrogen segmented flow was separated in a microfabricated silicon-glass device, with a main channel (width, W = 600 ?m; height, H = 120 ?m) leading into an array of 276 capillaries (100 ?m long; width = 5 ?m facing the main channel and 25 ?m facing the liquid outlet), on both sides of the channel. At optimal pressure differences, the wetting phase (water) flowed through the capillaries into the liquid outlet, whereas the nonwetting phase (nitrogen) flowed past the capillaries into the gas outlet. A high-speed imaging methodology aided by computational analysis was used to quantify the length of the liquid slugs and their positions in the separation zone. It was observed that during stable separation, the position of the leading edge of the liquid slugs (advancing meniscus), which became stationary in the separation zone, was dependent only on the outlet pressure difference. The trailing edge of the liquid slugs (receding meniscus) approached the advancing meniscus at a constant speed, thus leading to a linear decrease of the liquid slug length. Close to the liquid-to-gas breakthrough point, that is, when water exited through the gas outlet, the advancing meniscus was no longer stationary, and the slug lengths decreased exponentially. The rates of decrease of the liquid slug length during separation were accurately estimated by the model, and the calculated liquid-to-gas breakthrough pressures agreed with experimental measurements.

11.
Nucleic Acids Res ; 47(5): 2666-2680, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30597093

RESUMEN

As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Desplegamiento Proteico , Proteínas Bacterianas/genética , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Interacción Gen-Ambiente , Humanos , Dominios Proteicos , Multimerización de Proteína/genética , Salmonella/genética , Salmonella/patogenicidad , Temperatura , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad
12.
Lab Chip ; 18(4): 585-594, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29345271

RESUMEN

Flocculation is a key purification step in cell-based processes for the food and pharmaceutical industry where the removal of cells and cellular debris is aided by adding flocculating agents. However, finding the best suited flocculating agent and optimal conditions to achieve rapid and effective flocculation is a non-trivial task. In conventional analytical systems, turbulent mixing creates a dynamic equilibrium between floc growth and breakage, constraining the determination of floc formation rates. Furthermore, these systems typically rely on end-point measurements only. We have successfully developed for the first time a microfluidic system for the study of flocculation under well controlled conditions. In our microfluidic device (µFLOC), floc sizes and growth rates were monitored in real time using high-speed imaging and computational image analysis. The on-line and in situ detection allowed quantification of floc sizes and their growth kinetics. This eliminated the issues of sample handling, sample dispersion, and end-point measurements. We demonstrated the power of this approach by quantifying the growth rates of floc formation under forty different growth conditions by varying industrially relevant flocculating agents (pDADMAC, PEI, PEG), their concentration and dosage. Growth rates between 12.2 µm s-1 for a strongly cationic flocculant (pDADMAC) and 0.6 µm s-1 for a non-ionic flocculant (PEG) were observed, demonstrating the potential to rank flocculating conditions in a quantitative way. We have therefore created a screening tool to efficiently compare flocculating agents and rapidly find the best flocculating condition, which will significantly accelerate early bioprocess development.

13.
J Chem Technol Biotechnol ; 91(3): 823-831, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27478291

RESUMEN

BACKGROUND: Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. RESULTS: An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and kLa values of ∼170 h-1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 gdcw L-1. Oxygen uptake rates of ∼34 mmol L-1 h-1 were achieved. CONCLUSION: The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

14.
Nat Commun ; 6: 10013, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26635203

RESUMEN

Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.


Asunto(s)
Neoplasias Renales/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Tumor de Wilms/genética , Estudios de Cohortes , Histonas/genética , Histonas/metabolismo , Humanos , Riñón/metabolismo , Neoplasias Renales/metabolismo , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Tumor de Wilms/metabolismo
15.
Methods Cell Biol ; 128: 69-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25997343

RESUMEN

Examining the collective mechanical behaviors of interacting cytoskeletal motors has become increasingly important to dissecting the complex and multifaceted mechanisms that regulate the transport and trafficking of materials in cells. Although studying these processes in living cells has been challenging, the development of new Synthetic Biology techniques has opened unique opportunities to both manipulate and probe how these motors function in groups as they navigate the native cytoskeleton. Here, we describe an approach to engineer mammalian cells for a new class of inducible cargo motility assays that utilize drug-dependent protein dimerization switches to regulate motor-cargo coupling and transport. Our adaptations provide genetic-level control over the densities of motor proteins coupled to, as well as the sizes of endogenous vesicular cargos in these assays. By allowing the examination of transport responses to changes in motor density and cargo size-dependent viscous drag force, such control can enable quantitative comparisons of mechanistic distinctions between the collective behaviors of different types of processive cytoskeletal motors.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Transporte Biológico/fisiología , Movimiento Celular/fisiología , Microtúbulos/metabolismo , Animales , Proteínas Bacterianas/genética , Células COS , Línea Celular , Chlorocebus aethiops , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Luminiscentes/genética , Proteínas de la Membrana/metabolismo , Miosinas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sirolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
16.
Cell Host Microbe ; 16(1): 128-40, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25011111

RESUMEN

Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria.


Asunto(s)
Regulación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Plasmodium berghei/enzimología , Plasmodium berghei/crecimiento & desarrollo , Animales , Femenino , Técnicas de Inactivación de Genes , Ratones , Plasmodium falciparum/enzimología
17.
Proc Natl Acad Sci U S A ; 111(3): E334-43, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24402168

RESUMEN

Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.


Asunto(s)
Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Animales , Proteínas Bacterianas/química , Transporte Biológico , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Doxiciclina/química , Elasticidad , Cinesinas/química , Proteínas Luminiscentes/química , Lisosomas/metabolismo , Microtúbulos/metabolismo , Peroxisomas/metabolismo , Reología , Biología Sintética , Viscosidad
20.
J Biol Chem ; 288(17): 11771-85, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23417675

RESUMEN

PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.


Asunto(s)
Células Presentadoras de Antígenos , Antígeno B7-H1 , Comunicación Celular , Proteína 2 Ligando de Muerte Celular Programada 1 , Receptor de Muerte Celular Programada 1 , Linfocitos T , Animales , Células Presentadoras de Antígenos/química , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígeno B7-1/química , Antígeno B7-1/genética , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Comunicación Celular/inmunología , Humanos , Ratones , Modelos Inmunológicos , Resonancia Magnética Nuclear Biomolecular , Proteína 2 Ligando de Muerte Celular Programada 1/química , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/química , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Linfocitos T/química , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...