Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521336

RESUMEN

The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems. The use of diverse cellulose particles as fundamental components gives rise to materials with distinct microstructures and characteristics, fulfilling the requirements of various biological applications. Although cellulose boasts substantial potential across various sectors, its exploration has predominantly unfolded within industrial realms, leaving the biomedical domain somewhat overlooked in its initial stages. This investigation, therefore, endeavors to shed light on the contemporary strides made in synthesizing cellulose and its derivatives. These innovative techniques give rise to distinctive attributes, presenting a treasure trove of advantages for their compelling integration into the intricate tapestry of biomedical applications.


Asunto(s)
Celulosa , Hidrogeles , Celulosa/química , Hidrogeles/química , Polisacáridos/química , Madera , Ingeniería de Tejidos/métodos
2.
Arch Microbiol ; 206(4): 156, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480544

RESUMEN

Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Pancreáticas , Humanos , Butiratos/metabolismo , Neoplasias Pancreáticas/diagnóstico
3.
Environ Toxicol Pharmacol ; 101: 104193, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348772

RESUMEN

Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system. Geographical distribution, migration patterns, etymologies of formation, and ecological ramifications of absorption are just a few topics covered in the scientific literature on environmental issues. Degradable solutions from material science and chemistry are needed to address the micro/nanoplastics problem, primarily to reduce the production of these pollutants and their potential effects. Removing micro/nanoplastics from their discharge points has been a central and effective way to mitigate the adverse pollution effects. In this review, we begin by discussing the hazardous effect on living beings and the identification-characterization of micro/nanoplastics. Then, we provide a summary of the existing degradation strategies, which include bio-degradation and advanced oxidation processes (AOPs), and a detailed discussion of their degradation mechanisms is also represented. Finally, a persuasive summary of the evaluated work and projections for the future of this topic is provided.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental
4.
Reprod Sci ; 28(1): 134-143, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32734563

RESUMEN

This pilot study was conducted to explore the benefits of using a centrifugation-free device based on the migration-sedimentation (MS) technique over centrifugation-based techniques in selecting competent spermatozoa, as compared with using split human semen samples. Ejaculates from 35 men undergoing semen analysis were split into four parts where one part was retained as the neat (NE) and the other three parts were subjected to sperm selection by using migration-sedimentation (MS), density gradient (DG) separation, and swim-up (SU) techniques. Sperm functional characteristics along with mitochondrial integrity, tyrosine phosphorylation, acrosome reaction, and ultrastructure were measured. The ability of selection techniques in reducing spontaneous and radiation-induced sperm DNA lesions was assessed by the TUNEL assay. In results, MS-selected spermatozoa had higher viability (P < 0.001), longevity in terms of total motility at the end of 6 and 18 h post-extraction (P < 0.001), and mitochondrial integrity (P < 0.001) compared with those selected by DG. Furthermore, spontaneous DNA lesions were significantly reduced in MS and SU fractions compared with NE (P < 0.001). Similarly, radiation-induced sperm DNA lesions were significantly lower in MS and SU fractions (P < 0.001) compared with DG. Ultrastructural analysis using scanning electron microscopy suggested a moderate, non-significant increase in the number of spermatozoa with normal head and mid-piece in MS fraction compared with other methods. In conclusion, the MS-based device offers a centrifugation-free, efficient, and reliable sperm selection method, making it suitable for partially equipped intra-uterine insemination (IUI) laboratories or office IUI programmes. Further research should focus on the safety and clinical usefulness of the device in assisted conception programmes in general and IUI in specific.


Asunto(s)
Separación Celular/instrumentación , Daño del ADN , Infertilidad Masculina/diagnóstico , Manejo de Especímenes/instrumentación , Motilidad Espermática , Espermatozoides/ultraestructura , Adulto , Eyaculación , Diseño de Equipo , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Microscopía Electrónica de Rastreo , Proyectos Piloto , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA