Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis Rep ; 5(1): 443-468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368630

RESUMEN

BACKGROUND: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer's disease dementia (AD)) as an 'Inception cohort' who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an 'Enrichment cohort' (as of 10 April 2019). OBJECTIVE: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. METHODS: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. RESULTS: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aß-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. CONCLUSION: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.

3.
Neurosci Biobehav Rev ; 58: 46-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25524877

RESUMEN

It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.


Asunto(s)
Conducta , Dieta , Inmunidad/fisiología , Obesidad/etiología , Animales , Femenino , Humanos , Enfermedades Metabólicas/etiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología
4.
Brain Behav Immun ; 38: 13-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24291211

RESUMEN

Calorie restriction (CR) has been shown to increase longevity and elicit many health promoting benefits including delaying immunosenescence and attenuating neurodegeneration in animal models of Alzheimer's disease and Parkinson's disease. CR also suppresses microglial activation following cortical injury and aging. We previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and shifts hypothalamic signaling pathways to an anti-inflammatory bias; however, the effects of CR on LPS-induced microglial activation remain largely unexplored. The current study investigated regional changes in LPS-induced microglial activation in mice exposed to 50% CR for 28days. Immunohistochemistry was conducted to examine changes in ionized calcium-binding adapter molecule-1 (Iba1), a protein constitutively expressed by microglia, in a total of 27 brain regions involved in immunity, stress, and/or thermoregulation. Exposure to CR attenuated LPS-induced fever, and LPS-induced microglial activation in a subset of regions: the arcuate nucleus (ARC) and ventromedial nucleus of the hypothalamus (VMH) and the subfornical organ (SFO). Microglial activation in the ARC and VMH was positively correlated with body temperature. These data suggest that CR exerts effects on regionally specific populations of microglia; particularly, in appetite-sensing regions of the hypothalamus, and/or regions lacking a complete blood brain barrier, possibly through altered pro- and anti-inflammatory signaling in these regions.


Asunto(s)
Restricción Calórica , Hipotálamo/metabolismo , Microglía/metabolismo , Órgano Subfornical/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Hipotálamo/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R172-84, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21525175

RESUMEN

Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 µg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.


Asunto(s)
Restricción Calórica , Hipotálamo/fisiología , Conducta de Enfermedad/fisiología , Inflamación/fisiopatología , Lipopolisacáridos/efectos adversos , Transducción de Señal/fisiología , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/efectos de los fármacos , Inflamación/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Leptina/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proopiomelanocortina/metabolismo , Prostaglandina-E Sintasas , Transducción de Señal/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA