Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847470

RESUMEN

BACKGROUND: Phycocyanobilin (PCB) is an open-chain blue tetrapyrrole chromophore of C-phycocyanin (C-PC), a major chromoprotein derived from the cyanobacterium Arthrospira platensis having numerous health-promoting effects. Relying on the ability of PCB to attach to the sulfhydryl group of proteins, we propose a new method for covalent attachment of PCB to bovine serum albumin (BSA) as a means of its functionalization. RESULTS: Traut's reagent (TR, 2-iminothiolane), modifying lysine residues, was used to optimize the introduction of sulfhydryl groups in BSA. A higher degree of BSA thiolation by TR induces more profound alterations of its structure, resulting in minor oligomerization and aggregation. A 50-fold molar excess of TR was found to be the optimal, balancing thiolation level and adverse effect on protein structure. PCB was covalently attached to newly introduced sulfhydryl groups at pH 9 at 20-fold PCB/BSA ratio. An increase in the TR/BSA molar ratio leads to increased efficiency of PCB conjugation with thiolated BSA. Compared to native BSA, BSA-PCB conjugate binds quercetin with similar affinity but has higher antioxidant activity and increased oxidative stability. CONCLUSIONS: PCB-modified BSA could serve as a stable, food-compatible carrier of bioactive PCB, but also bind other ligands that would be protected from oxidative damage due to the high antioxidant potential of covalently bound PCB. Thiolation by TR is, at the same time, a simple method for the covalent functionalization of virtually any protein by bioactive PCB or for obtaining PCB-based fluorescent probes. © 2024 Society of Chemical Industry.

2.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37895089

RESUMEN

Tropomyosin is the major and predominant allergen among shellfish. This study developed an ultrasensitive immuno-PCR method for the quantification of crustacean tropomyosin in foods. The method couples sandwich ELISA with the real-time PCR (rtPCR) amplification of marker DNAs. Monoclonal anti-TPM antibody was the capture antibody, polyclonal rabbit anti-shrimp tropomyosin antibody was the detection antibody, while natural shrimp tropomyosin served as the standard. A double-stranded amino-DNA was covalently conjugated to a secondary anti-rabbit antibody and subsequently amplified and quantified via rtPCR. The quantification sensitivity of immuno-PCR was 20-fold higher than analogous ELISA, with LOQ 19.8 pg/mL. The developed immuno-PCR method is highly specific for the detection of crustacean tropomyosin and is highly precise in a broad concentration range. Tropomyosin recovery in the spiked vegetable soup was 87.7-115.6%. Crustacean tropomyosin was also quantified in commercial food products. The reported immuno-PCR assay is the most sensitive method for the quantification of crustacean tropomyosin and is the first immuno-PCR-based assay for the quantification of food allergen and food protein in general. The described method could be easily adapted for the specific and ultrasensitive immuno-PCR-based detection of traces of any food allergen that is currently being quantified with ELISA, which is of critical importance for people with food allergies.


Asunto(s)
Hipersensibilidad a los Alimentos , Tropomiosina , Humanos , Animales , Conejos , Tropomiosina/genética , Crustáceos , Mariscos , Alimentos Marinos/análisis , Alérgenos , Hipersensibilidad a los Alimentos/diagnóstico
3.
Antioxidants (Basel) ; 12(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37107190

RESUMEN

Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.

4.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203504

RESUMEN

In this study, a cost-effective sandwich ELISA test, based on polyclonal antibodies, for routine quantification SARS-CoV-2 nucleocapsid (N) protein was developed. The recombinant N protein was produced and used for the production of mice and rabbit antisera. Polyclonal N protein-specific antibodies served as capture and detection antibodies. The prototype ELISA has LOD 0.93 ng/mL and LOQ 5.3 ng/mL, with a linear range of 1.52-48.83 ng/mL. N protein heat pretreatment (56 °C, 1 h) decreased, while pretreatment with 1% Triton X-100 increased analytical ELISA sensitivity. The diagnostic specificity of ELISA was 100% (95% CI, 91.19-100.00%) and sensitivity was 52.94% (95% CI, 35.13-70.22%) compared to rtRT-PCR (Ct < 40). Profoundly higher sensitivity was obtained using patient samples mostly containing Wuhan-similar variants (Wuhan, alpha, and delta), 62.50% (95% CI, 40.59 to 81.20%), in comparison to samples mostly containing Wuhan-distant variants (Omicron) 30.00% (6.67-65.25%). The developed product has relatively high diagnostic sensitivity in relation to its analytical sensitivity due to the usage of polyclonal antibodies from two species, providing a wide repertoire of antibodies against multiple N protein epitopes. Moreover, the fast, simple, and inexpensive production of polyclonal antibodies, as the most expensive assay components, would result in affordable antigen tests.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside , Animales , Humanos , Conejos , SARS-CoV-2 , COVID-19/diagnóstico , Anticuerpos , Ensayo de Inmunoadsorción Enzimática
5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830267

RESUMEN

The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.


Asunto(s)
Antivirales/uso terapéutico , COVID-19/prevención & control , Polifenoles/uso terapéutico , Antivirales/química , Antivirales/metabolismo , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Humanos , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Polifenoles/química , Polifenoles/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064568

RESUMEN

Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Cardiovasculares , Resveratrol , SARS-CoV-2/metabolismo , Disponibilidad Biológica , COVID-19/complicaciones , COVID-19/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Humanos , Resveratrol/farmacocinética , Resveratrol/uso terapéutico
7.
Virology ; 557: 15-22, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582454

RESUMEN

Serological testing is important method for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nucleocapsid (N) protein is the most abundant virus derived protein and strong immunogen. We aimed to find its efficient, low-cost production. SARS-CoV-2 recombinant fragment of nucleocapsid protein (rfNP; 58-419 aa) was expressed in E. coli in soluble form, purified and characterized biochemically and immunologically. Purified rfNP has secondary structure of full-length recombinant N protein, with high percentage of disordered structure (34.2%) and of ß-sheet (40.7%). rfNP was tested in immunoblot using sera of COVID-19 convalescent patients. ELISA was optimized with sera of RT-PCR confirmed positive symptomatic patients and healthy individuals. IgG detection sensitivity was 96% (47/50) and specificity 97% (67/68), while IgM detection was slightly lower (94% and 96.5%, respectively). Cost-effective approach for soluble recombinant N protein fragment production was developed, with reliable IgG and IgM antibodies detection of SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , COVID-19/sangre , COVID-19/inmunología , Prueba Serológica para COVID-19/métodos , Estudios de Casos y Controles , Clonación Molecular , Proteínas de la Nucleocápside de Coronavirus/genética , Ensayo de Inmunoadsorción Enzimática/normas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Sueros Inmunes/química , Inmunoglobulina M/sangre , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Sensibilidad y Especificidad
8.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796496

RESUMEN

Transepithelial transport of proteins is an important step in the immune response to food allergens. Mammalian meat allergy is characterized by an IgE response against the carbohydrate moiety galactosyl-α-1,3-galactose (α-Gal) present on mammalian glycoproteins and glycolipids, which causes severe allergic reactions several hours after red meat consumption. The delayed reaction may be related to the processing of α-Gal carrying proteins in the gastrointestinal tract. The aim of this study was to investigate how protein glycosylation by α-Gal affects the susceptibility to gastric digestion and transport through the Caco-2 cell monolayer. We found that α-Gal glycosylation altered protein susceptibility to gastric digestion, where large protein fragments bearing the α-Gal epitope remained for up to 2 h of digestion. Furthermore, α-Gal glycosylation of the protein hampered transcytosis of the protein through the Caco-2 monolayer. α-Gal epitope on the intact protein could be detected in the endosomal fraction obtained by differential centrifugation of Caco-2 cell lysates. Furthermore, the level of galectin-3 in Caco-2 cells was not affected by the presence of α-Gal glycosylated BSA (bovine serum albumin) (BSA-α-Gal). Taken together, our data add new knowledge and shed light on the digestion and transport of α-Gal glycosylated proteins.


Asunto(s)
Disacáridos/metabolismo , Proteínas/química , Transcitosis , Animales , Células CACO-2 , Carbohidratos/química , Bovinos , Endosomas/metabolismo , Galectina 3/metabolismo , Glicosilación , Humanos , Pepsina A/metabolismo , Transporte de Proteínas , Albúmina Sérica Bovina/metabolismo
9.
Foods ; 9(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545422

RESUMEN

The French paradox describes a lower incidence of cardiovascular problems despite a high intake of saturated fats. This phenomenon was associated with higher consumption of red wine, as it was later discovered that the presence of antioxidants, including resveratrol, have beneficial effects. We hypothesized that resveratrol may have a more direct role in protection from harmful oxidation, presumably through binding to important proteins of the blood coagulation process. Spectrofluorimetry demonstrated that resveratrol is capable of binding to fibrinogen, the main protein in the coagulation process, which is also important as a food additive. Various spectroscopic methods determined that binding does not cause fibrinogen unfolding or destabilization since protein melting temperature remains unchanged. A mutually protective effect against the free radical-induced oxidation of polyphenol and fibrinogen was found. The presence of fibrinogen caused only a negligible masking effect of the antioxidative abilities of resveratrol, measured by a reduction of hexacyanoferrate (III), while greatly increasing its solubility in an aqueous environment, thus increasing its potential bioavailability. Due to its interaction with fibrinogen, resveratrol may serve as an antioxidant at the site of injury. The antioxidative effect of resveratrol may also protect and thus keep the desired characteristics of fibrinogen during the application of this protein as a food additive.

10.
J Biol Inorg Chem ; 25(2): 253-265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32020293

RESUMEN

The reactions of four cymene-capped ruthenium(II) compounds with pro-apoptotic protein, cytochrome c (Cyt), and anti-proliferative protein lysozyme (Ly) in carbonate buffer were investigated by ESI-MS, UV-vis absorption, and CD spectroscopy. The complexes with two chloride ligands (C2 and C3) were more reactive toward proteins than those with only one (C1 and C4), and the complex with S,N-chelating ligand (C4) was less reactive than one with O,N-chelating ligand (C1). Dehalogenated complexes are most likely species, initially coordinating proteins for all tested complexes. During the time, protein adducts vividly exchanged non-arene organic ligand L with CO32- and OH-, while cymene moiety was retained. In water, only dehalogenated adducts were identified suggesting that in vivo, in the presence of various anions, dynamic ligand exchange could generate different intermediate protein species. Although all complexes reduced Cyt, the reduction was not dependent on their reactivity to protein, implying that initially noncovalent binding to Cyt occurs, causing its reduction, followed by coordination to protein. Cyt reduction was accompanied with rupture of ferro-Met 80 and occupation of this hem coordination site by a histidine His-33/26. Therefore, in Cyt with C2 and C3, less intensive reduction of hem iron leaves more unoccupied target residues for Ru coordination, leading to more efficient formation of covalent adducts, in comparison to C1 and C4. This study contributes to development of new protein-targeted Ru(II) cymene complexes, and to the design of new cancer therapies based on targeted delivery of Ru(II) arene complexes bound on pro-apoptotic/anti-proliferative proteins as vehicles.


Asunto(s)
Complejos de Coordinación/química , Cimenos/química , Citocromos c/química , Muramidasa/química , Rutenio/química , Conformación Molecular , Muramidasa/metabolismo
11.
Food Chem ; 278: 388-395, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30583389

RESUMEN

α-Lactalbumin (ALA) is a Ca2+-binding protein which constitutes up to 20% of whey protein. At acidic pH, and in the apo-state at elevated temperatures, ALA is the classic 'molten globule' (MG). This study examined epigallocatechin-3-gallate (EGCG) binding to ALA in its apo form (apoALA) and stabilizing effect on protein structure thereof. EGCG binds to apoALA in both native and MG state. The complex of EGCG and ALA is more stable to thermal denaturation. The docking analysis and molecular dynamic simulation (MDS) showed that Ca2+ removal decreased conformational stability of ALA, because of the local destabilization of Ca2+-binding region. EGCG binding to apoALA increases its stability by reverting of conformation and stability of Ca2+-binding region. Therefore, EGCG-induced thermal stability of apoALA is based on increased apoALA conformational rigidity. This study implies that during gastric digestion of tea with milk EGCG would remain bound to ALA, albeit in the Ca2+-free form.


Asunto(s)
Apoproteínas/química , Catequina/análogos & derivados , Lactalbúmina/química , Simulación de Dinámica Molecular , Animales , Apoproteínas/metabolismo , Sitios de Unión , Calcio/química , Catequina/química , Catequina/metabolismo , Concentración de Iones de Hidrógeno , Lactalbúmina/metabolismo , Unión Proteica , Desnaturalización Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
12.
Food Chem ; 269: 43-52, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30100456

RESUMEN

In this study, we investigated structural aspects of covalent binding of food derived blue pigment phycocyanobilin (PCB) to bovine ß-lactoglobulin (BLG), major whey protein, by spectroscopic, electrophoretic, mass spectrometry and computational methods. At physiological pH (7.2), we found that covalent pigment binding via free cysteine residue is slow (ka = 0.065 min-1), of moderate affinity (Ka = 4 × 104 M-1), and stereo-selective. Binding also occurs at a broad pH range and under simulated gastrointestinal conditions. Adduct formation rises with pH, and in concentrated urea (ka = 0.101 min-1). The BLG-PCB adduct has slightly altered secondary and tertiary protein structure, and bound PCB has higher fluorescence and more stretched conformation than free chromophore. Combination of steered molecular dynamic for disulfide exchange, non-covalent and covalent docking, favours Cys119 residue in protein calyx as target for covalent BLG-PCB adduct formation. Our results suggest that this adduct can serve as delivery system of bioactive PCB.


Asunto(s)
Lactoglobulinas/química , Ficobilinas/química , Ficocianina/química , Animales , Sitios de Unión , Bovinos , Concentración de Iones de Hidrógeno , Pigmentación
13.
Food Chem ; 239: 1090-1099, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28873526

RESUMEN

Phycocyanobilin (PCB) is a blue tetrapyrrole chromophore of C-phycocyanin, the main protein of the microalga Spirulina, with numerous proven health-related benefits. We examined binding of PCB to bovine serum albumin (BSA) and how it affects protein and ligand stability. Protein fluorescence quenching and microscale thermophoresis demonstrated high-affinity binding (Ka=2×106M-1). Spectroscopic titration with molecular docking analysis revealed two binding sites on BSA, at the inter-domain cleft and at subdomain IB, while CD spectroscopy indicated stereo-selective binding of the P conformer of the pigment to the protein. The PCB protein complex showed increased thermal stability. Although complex formation partly masked the antioxidant properties of PCB and BSA, a mutually protective effect against free radical-induced oxidation was found. BSA could be suitable for delivery of PCB as a food colorant or bioactive component. Our results also highlight subtle differences between PCB binding to bovine vs. human serum albumin.


Asunto(s)
Ficobilinas/química , Ficocianina/química , Albúmina Sérica Bovina/química , Animales , Sitios de Unión , Bovinos , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA