Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
ACS Chem Biol ; 18(4): 942-948, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37043689

RESUMEN

Cellular pharmacodynamic assays are crucial aspects of lead optimization programs in drug discovery. These assays are sometimes difficult to develop, oftentimes distal from the target and frequently low throughput, which necessitates their incorporation in the drug discovery funnel later than desired. The earlier direct pharmacodynamic modulation of a target can be established, the fewer resources are wasted on compounds that are acting via an off-target mechanism. Mass spectrometry is a versatile tool that is often used for direct, proximal cellular pharmacodynamic assay analysis, but liquid chromatography-mass spectrometry methods are low throughput and are unable to fully support structure-activity relationship efforts in early medicinal chemistry programs. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is an ambient ionization method amenable to high-throughput cellular assays, capable of diverse analyte detection, ambient and rapid laser sampling processes, and low cross-contamination. Here, we demonstrate the capability of IR-MALDESI for the detection of diverse analytes directly from cells and report the development of a high-throughput, label-free, proximal cellular pharmacodynamic assay using IR-MALDESI for the discovery of glutaminase inhibitors and a biochemical assay for hit confirmation. We demonstrate the throughput with a ∼100,000-compound cellular screen. Hits from the screening were confirmed by retesting in dose-response with mass spectrometry-based cellular and biochemical assays. A similar workflow can be applied to other targets with minimal modifications, which will speed up the discovery of cell active lead series and minimize wasted chemistry resources on off-target mechanisms.


Asunto(s)
Glutaminasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glutaminasa/antagonistas & inhibidores , Rayos Láser , Proteínas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
2.
Int J Pharm ; 636: 122842, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925024

RESUMEN

Intravenous (IV) administration of poorly water-soluble small molecule therapeutics can lead to precipitation during mixing with blood. This can limit characterization of pharmacological and safety endpoints in preclinical models. Most often, tests of kinetic and thermodynamic solubility are used to optimize the formulation for solubility prior to infusion in animals, but these do not capture the dynamic precipitation processes that take place during in-vivo administration. To better capture the fluid dynamic processes that occur during IV administration, we developed the Optical Spatial PREcipitation analYzer (OSPREY) as a method to quantify the amount and size of compound precipitates in whole blood using a flow-through system that mimics IV administration. Here, we describe the OSPREY device and its underlying imaging processing methods. We then validate the ability to accurately segment particles according to their size using monodisperse suspensions of microspheres (diameter 50 to 425 µm). Next, we use a tool compound, ABT-737, to study the effects of compound concentration, vessel flow rate, compound infusion rate and vessel diameter on precipitation. Finally, we use the physiological diameter and flow rate of rat femoral vein and dog saphenous vein to demonstrate the potential of OSPREY to model in-vivo precipitation in a controlled, dynamic in-vitro assay.


Asunto(s)
Agua , Ratas , Animales , Perros , Inyecciones , Solubilidad , Precipitación Química
3.
J Am Soc Mass Spectrom ; 33(12): 2338-2341, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36378849

RESUMEN

Deconvolution from intact protein mass-to-charge spectra to mass spectra is essential to generate interpretable data for mass spectrometry (MS) platforms coupled to ionization sources that produce multiply charged species. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) can be used to analyze intact proteins in multiwell microtiter plates with speed matching small molecule analyses (at least 1 Hz). However, the lack of compatible deconvolution software has limited its use in high-throughput screening applications. Most existing automated deconvolution software packages work best for data generated from LC-MS, and to the best of our knowledge, there is no software capable of performing fast plate-based mass spectral deconvolution. Herein we present the use of a new workflow in ProSight Native for the deconvolution of protein spectra from entire well plates that can be completed within 3 s. First, we successfully demonstrated the potential increased throughput benefits produced by the combined IR-MALDESI-MS - ProSight Native platform using protein standards. We then conducted a screen for Bruton's tyrosine kinase (BTK) covalent binders against a well-annotated compound collection consisting of 2232 compounds and applied ProSight Native to deconvolute the protein spectra. Seventeen hits including five known BTK covalent inhibitors in the compound set were identified. By alleviating the data processing bottleneck using ProSight Native, it may be feasible to analyze and report covalent screening results for >200,000 samples in a single day.


Asunto(s)
Espectrometría de Masas , Proteínas , Proteínas/química , Programas Informáticos
4.
J Am Soc Mass Spectrom ; 33(11): 2070-2077, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36173393

RESUMEN

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid, ambient ionization source that combines the advantages of electrospray ionization and matrix-assisted laser desorption/ionization, making it a versatile tool for both high-throughput screening (HTS) and mass spectrometry imaging (MSI) studies. To expand the capabilities of the IR-MALDESI source, an entirely new architecture was designed to overcome the key limitations of the previous source. This next-generation (NextGen) IR-MALDESI source features a vertically mounted IR-laser, a planar translation stage with computerized sample height control, an aluminum enclosure, and a novel mass spectrometer interface plate. The NextGen IR-MALDESI source has improved user-friendliness, improved overall versatility, and can be coupled to numerous Orbitrap mass spectrometers to accommodate more research laboratories. In this work, we highlight the benefits of the NextGen IR-MALDESI source as an improved platform for MSI and direct analysis. We also optimize the NextGen MALDESI source component geometries to increase target ion abundances over a wide m/z range. Finally, documentation is provided for each NextGen IR-MALDESI part so that it can be replicated and incorporated into any lab space.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Rayos Láser
5.
Anal Chem ; 94(39): 13566-13574, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36129783

RESUMEN

Mass spectrometry (MS) is the primary analytical tool used to characterize proteins within the biopharmaceutical industry. Electrospray ionization (ESI) coupled to liquid chromatography (LC) is the current gold standard for intact protein analysis. However, inherent speed limitations of LC/MS prevent analysis of large sample numbers (>1000) in a day. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI-MS), an ambient ionization MS technology, has recently been established as a platform for high-throughput small molecule analysis. Here, we report the applications of such a system for the analysis of intact proteins commonly performed within the drug discovery process. A wide molecular weight range of proteins 10-150 kDa was detected on the system with improved tolerance to salts and buffers compared to ESI. With high concentrations and model proteins, a sample rate of up to 22 Hz was obtained. For proteins at low concentrations and in buffers used in commonly employed assays, robust data at a sample rate of 1.5 Hz were achieved, which is ∼22× faster than current technologies used for high-throughput ESI-MS-based protein assays. In addition, two multiplexed plate-based high-throughput sample cleanup methods were coupled to IR-MALDESI-MS to enable analysis of samples containing excessive amounts of salts and buffers without fully compromising productivity. Example experiments, which leverage the speed of the IR-MALDESI-MS system to monitor NISTmAb reduction, protein autophosphorylation, and compound binding kinetics in near real time, are demonstrated.


Asunto(s)
Productos Biológicos , Espectrometría de Masa por Ionización de Electrospray , Descubrimiento de Drogas , Rayos Láser , Proteínas/química , Sales (Química) , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
6.
Anal Chem ; 94(12): 4913-4918, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35290016

RESUMEN

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry is an ambient-direct sampling method that is being developed for high-throughput, label-free, biochemical screening of large-scale compound libraries. Here, we report the development of an ultra-high-throughput continuous motion IR-MALDESI sampling approach capable of acquiring data at rates up to 22.7 samples per second in a 384-well microtiter plate. At top speed, less than 1% analyte carryover is observed from well-to-well, and signal intensity relative standard deviations (RSD) of 11.5% and 20.9% for 3 µM 1-hydroxymidazolam and 12 µM dextrorphan, respectively, are achieved. The ability to perform parallel kinetics studies on 384 samples with a ∼30 s time resolution using an isocitrate dehydrogenase 1 (IDH1) enzyme assay is shown. Finally, we demonstrate the repeatability and throughput of our approach by measuring 115200 samples from 300 microtiter plate reads consecutively over 5.54 h with RSDs under 8.14% for each freshly introduced plate. Taken together, these results demonstrate the use of IR-MALDESI at sample acquisition rates that surpass other currently reported direct sampling mass spectrometry approaches used for high-throughput compound screening.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Pruebas de Enzimas , Rayos Láser , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Anal Chem ; 93(17): 6792-6800, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885291

RESUMEN

Mass spectrometry (MS) can provide high sensitivity and specificity for biochemical assays without the requirement of labels, eliminating the risk of assay interference. However, its use had been limited to lower-throughput assays due to the need for chromatography to overcome ion suppression from the sample matrix. Direct analysis without chromatography has the potential for high throughput if sensitivity is sufficient despite the presence of a matrix. Here, we report and demonstrate a novel direct analysis high-throughput MS system based on infrared matrix-assisted desorption electrospray ionization (IR-MALDESI) that has a potential acquisition rate of 33 spectra/s. We show the development of biochemical assays in standard buffers for wild-type isocitrate dehydrogenase 1 (IDH1), diacylglycerol kinase zeta (DGKζ), and p300 histone acetyltransferase (P300) to demonstrate the suitability of this system for a broad range of high-throughput lead discovery assays. A proof-of-concept pilot screen of ∼3k compounds is also shown for IDH1 and compared to a previously reported fluorescence-based assay. We were able to obtain reliable data at a speed amenable for high-throughput screening of large-scale compound libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Bioensayo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Gut ; 66(2): 285-292, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26503631

RESUMEN

OBJECTIVE: A major impediment to translating chemoprevention to clinical practice has been lack of intermediate biomarkers. We previously reported that rectal interrogation with low-coherence enhanced backscattering spectroscopy (LEBS) detected microarchitectural manifestations of field carcinogenesis. We now wanted to ascertain if reversion of two LEBS markers spectral slope (SPEC) and fractal dimension (FRAC) could serve as a marker for chemopreventive efficacy. DESIGN: We conducted a multicentre, prospective, randomised, double-blind placebo-controlled, clinical trial in subjects with a history of colonic neoplasia who manifested altered SPEC/FRAC in histologically normal colonic mucosa. Subjects (n=79) were randomised to 325 mg aspirin or placebo. The primary endpoint changed in FRAC and SPEC spectral markers after 3 months. Mucosal levels of prostaglandin E2 (PGE2) and UDP-glucuronosyltransferase (UGT)1A6 genotypes were planned secondary endpoints. RESULTS: At 3 months, the aspirin group manifested alterations in SPEC (48.9%, p=0.055) and FRAC (55.4%, p=0.200) with the direction towards non-neoplastic status. As a measure of aspirin's pharmacological efficacy, we assessed changes in rectal PGE2 levels and noted that it correlated with SPEC and FRAC alterations (R=-0.55, p=0.01 and R=0.57, p=0.009, respectively) whereas there was no significant correlation in placebo specimens. While UGT1A6 subgroup analysis did not achieve statistical significance, the changes in SPEC and FRAC to a less neoplastic direction occurred only in the variant consonant with epidemiological evidence of chemoprevention. CONCLUSIONS: We provide the first proof of concept, albeit somewhat underpowered, that spectral markers reversion mirrors antineoplastic efficacy providing a potential modality for titration of agent type/dose to optimise chemopreventive strategies in clinical practice. TRIAL NUMBER: NCT00468910.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Neoplasias del Colon/prevención & control , Análisis Espectral/métodos , Anciano , Antiinflamatorios no Esteroideos/efectos adversos , Aspirina/efectos adversos , Biomarcadores de Tumor , Quimioprevención , Dinoprostona/metabolismo , Método Doble Ciego , Femenino , Genotipo , Glucuronosiltransferasa/genética , Humanos , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Recto/metabolismo
9.
Biomed Opt Express ; 7(11): 4749-4762, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27896013

RESUMEN

The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

10.
BMC Ecol ; 16: 10, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996922

RESUMEN

BACKGROUND: At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 µm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, µ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. RESULTS: Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-µ'(S,m) corals bleach at higher rate and severity than high-µ'(S,m) corals and the Symbiodinium associated with low-µ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-µ'(S,m) corals. CONCLUSIONS: While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes µ'(S,m) as one of the key determinants of differential bleaching response.


Asunto(s)
Antozoos/fisiología , Antozoos/efectos de la radiación , Arrecifes de Coral , Dinoflagelados/fisiología , Animales , Luz , Fotoblanqueo , Dispersión de Radiación , Simbiosis , Temperatura
11.
J Biomed Opt ; 20(9): 097002, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26414387

RESUMEN

Reflectance measurements acquired from within the subdiffusion regime (i.e., lengthscales smaller than a transport mean free path) retain much of the original information about the shape of the scattering phase function. Given this sensitivity, many models of subdiffusion regime light propagation have focused on parametrizing the optical signal through various optical and empirical parameters. We argue, however, that a more useful and universal way to characterize such measurements is to focus instead on the fundamental physical properties, which give rise to the optical signal. This work presents the methodologies that used to model and extract tissue ultrastructural and microvascular properties from spatially resolved subdiffusion reflectance spectroscopy measurements. We demonstrate this approach using ex-vivo rat tissue samples measured by enhanced backscattering spectroscopy.


Asunto(s)
Algoritmos , Luz , Microvasos/fisiología , Modelos Biológicos , Nefelometría y Turbidimetría/métodos , Fotometría/métodos , Absorción de Radiación/fisiología , Animales , Simulación por Computador , Ratas , Dispersión de Radiación
12.
Clin Cancer Res ; 21(19): 4347-4355, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25991816

RESUMEN

PURPOSE: Colorectal cancer remains the second leading cause of cancer deaths in the United States despite being eminently preventable by colonoscopy via removal of premalignant adenomas. In order to more effectively reduce colorectal cancer mortality, improved screening paradigms are needed. Our group pioneered the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect the presence of adenomas throughout the colon via optical interrogation of the rectal mucosa. In a previous ex vivo biopsy study of 219 patients, LEBS demonstrated excellent diagnostic potential with 89.5% accuracy for advanced adenomas. The objective of the current cross-sectional study is to assess the viability of rectal LEBS in vivo. EXPERIMENTAL DESIGN: Measurements from 619 patients were taken using a minimally invasive 3.4-mm diameter LEBS probe introduced into the rectum via anoscope or direct insertion, requiring approximately 1 minute from probe insertion to withdrawal. The diagnostic LEBS marker was formed as a logistic regression of the optical reduced scattering coefficient [Formula: see text] and mass density distribution factor D. RESULTS: The rectal LEBS marker was significantly altered in patients harboring advanced adenomas and multiple non-advanced adenomas throughout the colon. Blinded and cross-validated test performance characteristics showed 88% sensitivity to advanced adenomas, 71% sensitivity to multiple non-advanced adenomas, and 72% specificity in the validation set. CONCLUSIONS: We demonstrate the viability of in vivo LEBS measurement of histologically normal rectal mucosa to predict the presence of clinically relevant adenomas throughout the colon. The current work represents the next step in the development of rectal LEBS as a tool for colorectal cancer risk stratification.


Asunto(s)
Neoplasias del Colon/diagnóstico , Detección Precoz del Cáncer , Lesiones Precancerosas/diagnóstico , Recto/patología , Adenoma/diagnóstico , Adenoma/patología , Anciano , Biomarcadores , Biopsia , Estudios de Casos y Controles , Neoplasias del Colon/patología , Factores de Confusión Epidemiológicos , Estudios Transversales , Detección Precoz del Cáncer/instrumentación , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Sistemas de Atención de Punto , Lesiones Precancerosas/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis Espectral/métodos
13.
Pancreas ; 44(5): 735-41, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25906443

RESUMEN

OBJECTIVES: To reduce pancreatic cancer mortality, a paradigm shift in cancer screening is needed. Our group pioneered the use of low-coherence enhanced backscattering (LEBS) spectroscopy to predict the presence of pancreatic cancer by interrogating the duodenal mucosa. A previous ex vivo study (n = 203) demonstrated excellent diagnostic potential: sensitivity, 95%; specificity, 71%; and accuracy, 85%. The objective of the current case-control study was to evaluate this approach in vivo. METHODS: We developed a novel endoscope-compatible fiber-optic probe to measure LEBS in the periampullary duodenum of 41 patients undergoing upper endoscopy. This approach enables minimally invasive detection of the ultrastructural consequences of pancreatic field carcinogenesis. RESULTS: The LEBS parameters and optical properties were significantly altered in patients harboring adenocarcinomas (including early-stage) throughout the pancreas relative to healthy controls. Test performance characteristics were excellent with sensitivity = 78%, specificity = 85%, and accuracy = 81%. Moreover, the LEBS prediction rule was not confounded by patients' demographics. CONCLUSION: We demonstrate the feasibility of in vivo measurement of histologically normal duodenal mucosa to predict the presence of adenocarcinoma throughout the pancreas. This represents the next step in establishing duodenal LEBS analysis as a prescreening technique that identifies clinically asymptomatic patients who are at elevated risk of PC.


Asunto(s)
Adenocarcinoma/ultraestructura , Duodenoscopía/métodos , Duodeno/ultraestructura , Tecnología de Fibra Óptica/métodos , Mucosa Intestinal/ultraestructura , Neoplasias Pancreáticas/ultraestructura , Adulto , Anciano , Estudios de Casos y Controles , Duodenoscopios , Duodenoscopía/instrumentación , Diseño de Equipo , Estudios de Factibilidad , Femenino , Tecnología de Fibra Óptica/instrumentación , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Análisis Espectral
14.
J Opt Soc Am A Opt Image Sci Vis ; 31(11): 2394-400, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401350

RESUMEN

Modeling of coherent polarized light propagation in turbid scattering medium by the Monte Carlo method provides an ultimate understanding of coherent effects of multiple scattering, such as enhancement of coherent backscattering and peculiarities of laser speckle formation in dynamic light scattering (DLS) and optical coherence tomography (OCT) diagnostic modalities. In this report, we consider two major ways of modeling the coherent polarized light propagation in scattering tissue-like turbid media. The first approach is based on tracking transformations of the electric field along the ray propagation. The second one is developed in analogy to the iterative procedure of the solution of the Bethe-Salpeter equation. To achieve a higher accuracy in the results and to speed up the modeling, both codes utilize the implementation of parallel computing on NVIDIA Graphics Processing Units (GPUs) with Compute Unified Device Architecture (CUDA). We compare these two approaches through simulations of the enhancement of coherent backscattering of polarized light and evaluate the accuracy of each technique with the results of a known analytical solution. The advantages and disadvantages of each computational approach and their further developments are discussed. Both codes are available online and are ready for immediate use or download.


Asunto(s)
Electricidad , Luz , Método de Montecarlo , Dispersión de Radiación , Movimiento (Física) , Fotones , Tomografía de Coherencia Óptica
15.
PLoS One ; 9(10): e110157, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25299667

RESUMEN

Lung cancer remains the leading cause of cancer deaths in the US with >150,000 deaths per year. In order to more effectively reduce lung cancer mortality, more sophisticated screening paradigms are needed. Previously, our group demonstrated the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect and quantify the micro/nano-architectural correlates of colorectal and pancreatic field carcinogenesis. In the lung, the buccal (cheek) mucosa has been suggested as an excellent surrogate site in the "field of injury". We, therefore, wanted to assess whether LEBS could similarly sense the presence of lung. To this end, we applied a fiber-optic LEBS probe to a dataset of 27 smokers without diagnosed lung cancer (controls) and 46 with lung cancer (cases), which was divided into a training and a blinded validation set (32 and 41 subjects, respectively). LEBS readings of the buccal mucosa were taken from the oral cavity applying gentle contact. The diagnostic LEBS marker was notably altered in patients harboring lung cancer compared to smoking controls. The prediction rule developed on training set data provided excellent diagnostics with 94% sensitivity, 80% specificity, and 95% accuracy. Applying the same threshold to the blinded validation set yielded 79% sensitivity and 83% specificity. These results were not confounded by patient demographics or impacted by cancer type or location. Moreover, the prediction rule was robust across all stages of cancer including stage I. We envision the use of LEBS as the first part of a two-step paradigm shift in lung cancer screening in which patients with high LEBS risk markers are funnelled into more invasive screening for confirmation.


Asunto(s)
Carcinogénesis , Detección Precoz del Cáncer , Tecnología de Fibra Óptica , Neoplasias Pulmonares/diagnóstico , Mucosa Bucal/ultraestructura , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/química , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mucosa Bucal/metabolismo , Nanoestructuras/química , Factores de Riesgo , Fumar/efectos adversos
16.
Cancer Epidemiol Biomarkers Prev ; 23(11): 2413-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25155760

RESUMEN

BACKGROUND: We have previously reported that colonic pericryptal microvascular blood flow is augmented in the premalignant colonic epithelium, highlighting the increased metabolic demand of the proliferative epithelium as a marker of field carcinogenesis. However, its molecular basis is unexplored. In this study, we assessed the expression of a regulator of the "lipogenic switch," fatty acid synthase (FASN), in early colon carcinogenesis for its potential biomarker utility for concurrent neoplasia. METHODS: FASN expression (IHC) in the colonic epithelium from azoxymethane and polyposis in rat colon (Pirc) models of colorectal cancer was studied. FASN mRNA expression from endoscopically normal rectal mucosa was evaluated and correlated with colonoscopic findings (pathologic confirmation of neoplasia). RESULTS: FASN expression progressively increased from premalignant to malignant stage in the azoxymethane model (1.9- to 2.5-fold; P < 0.0001) and was also higher in the adenomas compared with adjacent uninvolved mucosa (1.8- to 3.4-fold; P < 0.001) in the Pirc model. Furthermore, FASN was significantly overexpressed in rectal biopsies from patients harboring adenomas compared with those with no adenomas. These effects were accentuated in male (∼2-fold) and obese patients (1.4-fold compared with those with body mass index < 30). Overall, the performance of rectal FASN was excellent (AUROC of 0.81). CONCLUSIONS: FASN is altered in the premalignant colonic mucosa and may serve as a marker for colonic neoplasia present elsewhere. The enhanced effects in men and obesity may have implications for identifying patient subgroups at risk for early-onset neoplasia. IMPACT: These findings support the role of rectal FASN expression as a reliable biomarker of colonic neoplasia.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Ácido Graso Sintasas/metabolismo , Obesidad/complicaciones , Animales , Biomarcadores de Tumor , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Obesidad/patología , Ratas
17.
J Biomed Opt ; 19(3): 36013, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24643530

RESUMEN

Field carcinogenesis is the initial stage of cancer progression. Understanding field carcinogenesis is valuable for both cancer biology and clinical medicine. Here, we used inverse spectroscopic optical coherence tomography to study colorectal cancer (CRC) and pancreatic cancer (PC) field carcinogenesis. Depth-resolved optical and ultrastructural properties of the mucosa were quantified from histologically normal rectal biopsies from patients with and without colon adenomas (n=85) as well as from histologically normal peri-ampullary duodenal biopsies from patients with and without PC (n=22). Changes in the epithelium and stroma in CRC field carcinogenesis were separately quantified. In both compartments, optical and ultra-structural alterations were consistent. Optical alterations included lower backscattering (µb) and reduced scattering (µs') coefficients and higher anisotropy factor g. Ultrastructurally pronounced alterations were observed at length scales up to ∼450 nm, with the shape of the mass density correlation function having a higher shape factor D, thus implying a shift to larger length scales. Similar alterations were found in the PC field carcinogenesis despite the difference in genetic pathways and etiologies. We further verified that the chromatin clumping in epithelial cells and collagen cross-linking caused D to increase in vitro and could be among the mechanisms responsible for the observed changes in epithelium and stroma, respectively.


Asunto(s)
Neoplasias Colorrectales , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pancreáticas , Tomografía de Coherencia Óptica/métodos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/ultraestructura , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/ultraestructura
18.
FEBS Lett ; 588(5): 829-35, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24492008

RESUMEN

End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Regulación hacia Arriba , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Animales , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Ratas , Análisis de Matrices Tisulares
19.
J Biomed Opt ; 18(9): 097002, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24008865

RESUMEN

Optical characterization of biological tissue in field carcinogenesis offers a method with which to study the mechanisms behind early cancer development and the potential to perform clinical diagnosis. Previously, low-coherence enhanced backscattering spectroscopy (LEBS) has demonstrated the ability to discriminate between normal and diseased organs based on measurements of histologically normal-appearing tissue in the field of colorectal (CRC) and pancreatic (PC) cancers. Here, we implement the more comprehensive enhanced backscattering (EBS) spectroscopy to better understand the structural and optical changes which lead to the previous findings. EBS provides high-resolution measurement of the spatial reflectance profile P(rs) between 30 microns and 2.7 mm, where information about nanoscale mass density fluctuations in the mucosa can be quantified. A demonstration of the length-scales at which P(rs) is optimally altered in CRC and PC field carcinogenesis is given and subsequently these changes are related to the tissue's structural composition. Three main conclusions are made. First, the most significant changes in P(rs) occur at short length-scales corresponding to the superficial mucosal layer. Second, these changes are predominantly attributable to a reduction in the presence of subdiffractional structures. Third, similar trends are seen for both cancer types, suggesting a common progression of structural alterations in each.


Asunto(s)
Carcinogénesis/patología , Neoplasias Colorrectales/ultraestructura , Neoplasias Pancreáticas/ultraestructura , Dispersión de Radiación , Análisis Espectral/métodos , Biopsia , Simulación por Computador , Humanos , Luz , Método de Montecarlo , Procesamiento de Señales Asistido por Computador
20.
Opt Express ; 21(7): 9043-59, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571994

RESUMEN

Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Matern functional family. By measuring the wavelength-dependent backscattering coefficient µb(λ) and the scattering coefficient µs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Modelos Biológicos , Modelos Estadísticos , Tomografía de Coherencia Óptica/métodos , Animales , Simulación por Computador , Humanos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...