Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6205, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080257

RESUMEN

Asteroids smaller than 10 km are thought to be rubble piles formed from the reaccumulation of fragments produced in the catastrophic disruption of parent bodies. Ground-based observations reveal that some of these asteroids are today binary systems, in which a smaller secondary orbits a larger primary asteroid. However, how these asteroids became binary systems remains unclear. Here, we report the analysis of boulders on the surface of the stony asteroid (65803) Didymos and its moonlet, Dimorphos, from data collected by the NASA DART mission. The size-frequency distribution of boulders larger than 5 m on Dimorphos and larger than 22.8 m on Didymos confirms that both asteroids are piles of fragments produced in the catastrophic disruption of their progenitors. Dimorphos boulders smaller than 5 m have size best-fit by a Weibull distribution, which we attribute to a multi-phase fragmentation process either occurring during coalescence or during surface evolution. The density per km2 of Dimorphos boulders ≥1 m is 2.3x with respect to the one obtained for (101955) Bennu, while it is 3.0x with respect to (162173) Ryugu. Such values increase once Dimorphos boulders ≥5 m are compared with Bennu (3.5x), Ryugu (3.9x) and (25143) Itokawa (5.1x). This is of interest in the context of asteroid studies because it means that contrarily to the single bodies visited so far, binary systems might be affected by subsequential fragmentation processes that largely increase their block density per km2. Direct comparison between the surface distribution and shapes of the boulders on Didymos and Dimorphos suggest that the latter inherited its material from the former. This finding supports the hypothesis that some asteroid binary systems form through the spin up and mass shedding of a fraction of the primary asteroid.

2.
Nat Commun ; 15(1): 6206, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080275

RESUMEN

Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders' fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA's Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures' preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.

3.
Nature ; 627(8004): 505-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418881

RESUMEN

The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...