Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2302, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484160

RESUMEN

Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5' end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3' end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging.


Asunto(s)
Telomerasa , Guanosina , Humanos , ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
2.
Methods Mol Biol ; 2281: 241-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847963

RESUMEN

Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of biological samples with a nanometric resolution. Determination of the physical properties of biological molecules at a single-molecule level is achieved through topographic analysis of the sample adsorbed on a flat and smooth surface. AFM has been widely used for the structural analysis of nucleic acid-protein interactions, providing insights on binding specificity and stoichiometry of proteins forming complexes with DNA substrates. Analysis of single-stranded DNA-binding proteins by AFM requires specific single-stranded/double-stranded hybrid DNA molecules as substrates for protein binding. In this chapter we describe the protocol for AFM characterization of binding properties of Drosophila telomeric protein Ver using DNA constructs that mimic the structure of chromosome ends. We provide details on the methodology used, including the procedures for the generation of DNA substrates, the preparation of samples for AFM visualization, and the data analysis of AFM images. The presented procedure can be adapted for the structural studies of any single-stranded DNA-binding protein.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , ADN de Cadena Simple/química , Drosophila melanogaster/genética , Microscopía de Fuerza Atómica , Unión Proteica , Imagen Individual de Molécula , Telómero/genética , Telómero/metabolismo
3.
J Mol Biol ; 432(15): 4305-4321, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32512004

RESUMEN

The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.


Asunto(s)
Drosophila/genética , Retroelementos , Telómero/genética , Animales , Regulación de la Expresión Génica , ARN Interferente Pequeño/genética , Transducción de Señal , Transcripción Genética
4.
PLoS Genet ; 16(5): e1008815, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453722

RESUMEN

Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Animales , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Letales , Tamaño de los Órganos , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
5.
Neurobiol Dis ; 105: 42-50, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28502804

RESUMEN

SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Trastornos del Movimiento/etiología , Atrofia Muscular Espinal/complicaciones , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Fenotipo , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora
6.
Nucleic Acids Res ; 45(6): 3068-3085, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27940556

RESUMEN

Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.


Asunto(s)
Daño del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Proteínas Cromosómicas no Histona/fisiología , Reparación del ADN , ADN de Cadena Simple/ultraestructura , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Proteínas de Drosophila/ultraestructura , Microscopía de Fuerza Atómica , Dominios Proteicos , Multimerización de Proteína , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/ultraestructura
7.
Open Biol ; 6(8)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27512140

RESUMEN

AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Células Cultivadas , Senescencia Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitosis , Membrana Nuclear/metabolismo , Telómero/metabolismo , Homeostasis del Telómero
8.
Nat Commun ; 7: 10405, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26778495

RESUMEN

Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity and are assembled independently of the sequence. Fly telomeres are protected by the terminin complex that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. We show that mutations in the Drosophila Separase encoding gene Sse lead not only to endoreduplication but also telomeric fusions (TFs), suggesting a role for Sse in telomere capping. We demonstrate that Separase binds terminin proteins and HP1, and that it is enriched at telomeres. Furthermore, we show that loss of Sse strongly reduces HP1 levels, and that HP1 overexpression in Sse mutants suppresses TFs, suggesting that TFs are caused by a HP1 diminution. Finally, we find that siRNA-induced depletion of ESPL1, the Sse human orthologue, causes telomere dysfunction and HP1 level reduction in primary fibroblasts, highlighting a conserved role of Separase in telomere protection.


Asunto(s)
Proteínas de Drosophila/metabolismo , Separasa/metabolismo , Telómero/metabolismo , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Drosophila , Proteínas de Drosophila/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Separasa/genética , Telómero/genética
9.
Chromosoma ; 113(4): 188-96, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15338233

RESUMEN

The Y chromosome of Drosophila melanogaster carries a limited number of loci necessary for male fertility that possess a series of unconventional features that still hinder a definition of their biological role: they have extremely large sizes; accommodate huge amounts of repetitive DNA; and develop prominent, lampbrush-like loops that bind a number of non-Y-encoded proteins. To obtain insight into the functional role of the loop-forming fertility factors, we characterized four autosomal male-sterile mutations that identify two loci we named loop unfolding protein-1 (lup-1) and loop unfolding protein-2 (lup-2). Biochemical and ultrastructural analysis revealed that neither of them impairs the synthesis of the putative dynein subunit encoded by the ORF localized within the kl-3 fertility factor. However, the stability of four dynein heavy chains is simultaneously affected in each mutant, together with the regular assembly of the axonemal dynein arms that are either absent or strongly reduced. These results indicate that the synthesis of the kl-3-encoded dynein can be uncoupled from the formation of the corresponding loop and suggest that this structure does not simply represent the cytological counterpart of a huge transcription unit, but must be regarded as a complex organelle serving some additional function necessary for male fertility.


Asunto(s)
Drosophila melanogaster/genética , Cromosoma Y/química , Cromosoma Y/genética , Animales , Mapeo Cromosómico , Dineínas/fisiología , Fertilidad , Masculino , Mutación , Espermatocitos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...