Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCO Precis Oncol ; 7: e2200580, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36952646

RESUMEN

PURPOSE: Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS: This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS: We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION: Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Farmacogenética/métodos , Estudios Transversales , Antineoplásicos/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fenotipo
2.
Blood Adv ; 7(9): 1769-1783, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36111891

RESUMEN

Etoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting. We performed a genome-wide CRISPR/Cas9 synthetic-lethal screening to identify functional modulators of etoposide response in leukemic cell line and integrated results from CRISPR-screen with gene expression and clinical outcomes in pediatric patients with AML treated with etoposide-containing regimen. Our results confirmed the involvement of well-characterized genes, including TOP2A and ABCC1, as well as identified novel genes such as RAD54L2, PRKDC, and ZNF451 that have potential to be novel drug targets. This study demonstrates the ability for leveraging CRISPR/Cas9 screening in conjunction with clinically relevant endpoints to make meaningful discoveries for the identification of prognostic biomarkers and novel therapeutic targets to overcome treatment resistance.


Asunto(s)
Sistemas CRISPR-Cas , Leucemia Mieloide Aguda , Humanos , Niño , Etopósido/farmacología , Etopósido/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Línea Celular , ADN Helicasas/genética
3.
Genome Med ; 14(1): 10, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086559

RESUMEN

BACKGROUND: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December 2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as antigenically novel SARS-CoV-2 variants continue to emerge across the globe. Viruses require host factors at every step in their life cycle, representing a rich pool of candidate targets for antiviral drug design. METHODS: To identify host factors that promote SARS-CoV-2 infection with potential for broad-spectrum activity across the coronavirus family, we performed genome-scale CRISPR knockout screens in two cell lines (Vero E6 and HEK293T ectopically expressing ACE2) with SARS-CoV-2 and the common cold-causing human coronavirus OC43. Gene knockdown, CRISPR knockout, and small molecule testing in Vero, HEK293, and human small airway epithelial cells were used to verify our findings. RESULTS: While we identified multiple genes and functional pathways that have been previously reported to promote human coronavirus replication, we also identified a substantial number of novel genes and pathways. The website https://sarscrisprscreens.epi.ufl.edu/ was created to allow visualization and comparison of SARS-CoV2 CRISPR screens in a uniformly analyzed way. Of note, host factors involved in cell cycle regulation were enriched in our screens as were several key components of the programmed mRNA decay pathway. The role of EDC4 and XRN1 in coronavirus replication in human small airway epithelial cells was verified. Finally, we identified novel candidate antiviral compounds targeting a number of factors revealed by our screens. CONCLUSIONS: Overall, our studies substantiate and expand the growing body of literature focused on understanding key human coronavirus-host cell interactions and exploit that knowledge for rational antiviral drug development.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/genética , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/patología , COVID-19/virología , Chlorocebus aethiops , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Edición Génica/métodos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas/metabolismo , Interferencia de ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Células Vero , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
4.
J Bone Miner Res ; 36(2): 347-356, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32967053

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug reaction. Our previous whole-exome sequencing study found SIRT1 intronic region single-nucleotide polymorphism (SNP) rs7896005 to be associated with MRONJ in cancer patients treated with intravenous (iv) bisphosphonates (BPs). This study aimed to identify causal variants for this association. In silico analyses identified three SNPs (rs3758391, rs932658, and rs2394443) in the SIRT1 promoter region that are in high linkage disequilibrium (r2 > 0.8) with rs7896005. To validate the association between these SNPs and MRONJ, we genotyped these three SNPs on the germline DNA from 104 cancer patients of European ancestry treated with iv BPs (46 cases and 58 controls). Multivariable logistic regression analysis showed the minor alleles of these three SNPs were associated with lower odds for MRONJ. The odds ratios (95% confidence interval) and p values were 0.351 (0.164-0.751; p = 0.007) for rs3758391, 0.351 (0.164-0.751; p = 0.007) for rs932658, and 0.331 (0.157-0.697; p = 0.0036) for rs2394443, respectively. In the reporter gene assays, constructs containing rs932658 with variant allele A had higher luciferase activity than the reference allele, whereas constructs containing SNP rs3758391 and/or rs2394443 did not significantly affect activity. These results indicate that the promoter SNP rs932658 regulates the expression of SIRT1 and presumably lowers the risk of MRONJ by increasing SIRT1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Osteonecrosis , Alelos , Osteonecrosis de los Maxilares Asociada a Difosfonatos/genética , Difosfonatos , Humanos , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Sirtuina 1/genética
5.
Leukemia ; 34(10): 2821, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32300185

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Leukemia ; 34(3): 735-745, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31645648

RESUMEN

Recently, mRNA-expression signature enriched in LSCs was used to create a 17-gene leukemic stem cell (LSC17) score predictive of prognosis in adult AML. By fitting a Cox-LASSO regression model to the clinical outcome and gene-expression levels of LSC enriched genes in 163 pediatric participants of the AML02 multi-center clinical trial (NCT00136084), we developed a six-gene LSC score of prognostic value in pediatric AML (pLSC6). In the AML02 cohort, the 5-year event-free survival (EFS) of patients within low-pLSC6 group (n = 97) was 78.3 (95% CI = 70.5-86.9%) as compared with 34.5(95% CI = 24.7-48.2 %) in patients within high-pLSC6 group (n = 66 subjects), p < 0.00001. pLSC6 remained significantly associated with EFS and overall survival (OS) after adjusting for induction 1-MRD status, risk-group, FLT3-status, WBC-count at diagnosis and age. pLSC6 formula developed in the AML02 cohort was validated in the pediatric AML-TARGET project data (n = 205), confirming its prognostic value in both single-predictor and multiple-predictor Cox regression models. In both cohorts, pLSC6 predicted outcome of transplant patients, suggesting it as a useful criterion for transplant referrals. Our results suggest that pLSC6 score holds promise in redefining initial risk-stratification and identifying poor risk AML thereby providing guidance for developing novel treatment strategies.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Adolescente , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Regresión , Medición de Riesgo , Índice de Severidad de la Enfermedad , Adulto Joven
7.
Blood Cancer J ; 9(6): 51, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113932

RESUMEN

Gemtuzumab-ozogamicin (GO), a humanized-anti-CD33 antibody linked with the toxin-calicheamicin-γ is a reemerging and promising drug for AML. Calicheamicin a key element of GO, induces DNA-damage and cell-death once the linked CD33-antibody facilitates its uptake. Calicheamicin efflux by the drug-transporter PgP-1 have been implicated in GO response thus in this study, we evaluated impact of ABCB1-SNPs on GO response. Genomic-DNA samples from 942 patients randomized to receive standard therapy with or without addition of GO (COG-AAML0531) were genotyped for ABCB1-SNPs. Our most interesting results show that for rs1045642, patients with minor-T-allele (CT/TT) had better outcome as compared to patients with CC genotype in GO-arm (Event-free survival-EFS: p = 0.022; and risk of relapse-RR, p = 0.007). In contrast, no difference between genotypes was observed for any of the clinical endpoints within No-GO arm (all p > 0.05). Consistent results were obtained when genotype groups were compared by GO and No-GO arms. The in vitro evaluation using HL60-cells further demonstrated consistent impact of rs1045642-T-allele on calicheamicin induced DNA-damage and cell-viability. Our results show the significance of ABCB1 SNPs on GO response in AML and warrants the need to investigate this in other cohorts. Once validated, ABCB1-SNPs in conjunction with CD33-SNPs can open up opportunities to personalize GO-therapy.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor , Gemtuzumab/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleótido Simple , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adolescente , Adulto , Alelos , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/efectos adversos , Niño , Preescolar , Femenino , Gemtuzumab/administración & dosificación , Gemtuzumab/efectos adversos , Genotipo , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Masculino , Pronóstico , Recurrencia , Resultado del Tratamiento , Adulto Joven
8.
Oncotarget ; 9(79): 34859-34875, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30405880

RESUMEN

Cytarabine has been an integral part of acute myeloid leukemia (AML) chemotherapy for over four decades. However, development of resistance and high rates of relapse is a significant impediment in successfully treating AML. We performed a genome-wide association analysis (GWAS) and identified 113 (83 after adjusting for Linkage Disequilibrium) SNPs associated with in vitro cytarabine chemosensitivity of diagnostic leukemic cells from a cohort of 50 pediatric AML patients (p<10-4). Further evaluation of diagnostic leukemic cell gene-expression identified 19 SNP-gene pairs with a concordant triad of associations: i)SNP genotype with cytarabine sensitivity (p<0.0001), ii) gene-expression with cytarabine sensitivity (p<0.05), and iii) genotype with gene-expression (p<0.1). Two genes from SNP-gene pairs, rs1376041-GPR56 and rs75400242-IGF1R, were functionally validated by siRNA knockdown in AML cell lines. Consistent with association of rs1376041 and gene-expression in AML patients siRNA mediated knock-down of GPR56 increased cytarabine sensitivity of AML cell lines. Similarly for IGF1R, knockdown increased the cytarabine sensitivity of AML cell lines consistent with results in AML patients. Given both IGF1R and GPR56 are promising drug-targets in AML, our results on SNPs driving the expression/function of these genes will not only enhance our understanding of cytarabine resistance but also hold promise in personalizing AML for targeted therapies.

10.
Oncotarget ; 9(42): 26711-26723, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29928480

RESUMEN

Acute myeloid leukemia (AML) may be an epigenetically-driven malignancy because it harbors fewer genomic mutations than other cancers. In recent studies of AML in adults, DNA methylation patterns associate with clinical risk groups and prognosis. However, thorough evaluations of methylation in pediatric AML have not been done. Therefore, we performed an integrated analysis (IA) of the methylome and transcriptome with clinical outcome in 151 pediatric patients from the multi-center AML02 clinical trial discovery cohort. Intriguingly, reduced methylation and increased expression of DNMT3B was associated with worse clinical outcomes (IA p ≤ 10-5; q ≤ 0.002). In particular, greater DNMT3B expression associated with worse minimal residual disease (MRD; p < 10-5; q = 0.01), a greater rate of relapse or resistant disease (RR) (p = 0.00006; q = 0.06), and event-free survival (EFS; p = 0.00003; q = 0.04). Also, greater DNMT3B expression associated with greater genome-wide methylation burden (GWMB; R = 0.39; p = 10-6) and greater GWMB associated with worse clinical outcomes (IA p < 10-5). In an independent validation cohort of 132 similarly treated AAML0531 clinical trial patients, greater DNMT3B expression associated with greater GWMB, worse MRD, worse RR, and worse EFS (all p < 0.03); also, greater GWMB associated with worse MRD (p = 0.004) and EFS (p = 0.037). These results indicate that DNMT3B and GWMB may have a central role in the development and prognosis of pediatric AML.

11.
Mol Oncol ; 10(6): 806-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26887594

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Páncreas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Indoles/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Gemcitabina , Neoplasias Pancreáticas
12.
Cytotechnology ; 68(5): 1717-26, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26507649

RESUMEN

Pharmaceutical industry now accept the worlds ocean which contains a vast array of organisms with unique biological properties, as a major frontier for medical investigation. Bioactive compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically macro and micro algae, and cyanobacteria. The aim of this work was to investigate antimicrobial and cytotoxic activities of the extracts of marine macro algae Ulva flexuosa, Padina antillarum and Padina boergeseni from the northern coasts of the Persian Gulf, Qeshm Island, Iran, against three cell lines including MCF7, HeLa and Vero, as well as their inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. Antimicrobial activity of the marine macro algal extracts was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test the effects of the extracts on each cancer cell line. The algal extracts showed considerable antimicrobial activity against the majority of the tested bacteria and fungi. Both ethyl acetate and methanol extracts at the highest concentration (100 µg/ml) caused cell death, with the IC50 values calculated for each cell type and each algal extracts. Results are exhibited a higher decrease in the viability of the cells treated at the highest concentration of marine macro algal ethyl acetate extracts compared to the methanol extracts (78.9 % death in Vero cells by ethyl acetate extracts from U. flexuosa). Despite, the ethyl acetate extracts with lower dose- response of cells, exhibited better cytotoxic activity than methanol extracts (IC50: 55.26 µg/ml in Vero cells by ethyl acetate extracts from U. flexuosa). Based on the findings, it is concluded that the marine macro algal extracts from the Persian Gulf possess antibacterial and cytotoxic potential, which could be considered for future applications in medicine and identifying novel drugs from the marine resources.

13.
Jundishapur J Microbiol ; 7(9): e16436, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25485066

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is one of the most common causes of nosocomial infections. Resistance of P. aeruginosa to ß-lactam antibiotics may be the result of acquired resistance through mutation and over production of various antibiotic inactivating enzymes. This research aimed to determine the prevalence of extended-spectrum ß-lactamases (ESBL) and metallo ß-lactamase (MBL) production as well as the presence of their related genes among AmpC ß-lactamase producing P. aeruginosa isolated from burns. OBJECTIVES: The current study aimed to determine the prevalence of class A ESBL and MBL production in relation to the presence of their related genes among AmpC ß-lactamase producing P. aeruginosa isolated from burns. MATERIALS AND METHODS: The antimicrobial susceptibility of 51 P. aeruginosa isolates from patients with burns was examined against 13 antibiotics by the disc diffusion method. Minimum inhibitory concentrations (MIC) for imipenem and ceftazidime were measured by the microdilution method. AmpC production was detected by AmpC disc and the modified three-dimensional extract tests. ESBL phenotype was confirmed by the double disc synergy test (DDST). Presence of ß-lactamase genes was detected by specific primers and polymerase chain reaction (PCR). RESULTS: All isolates were multidrug resistant. AmpC, ESBL and MBL production were observed in 35 (68.6%), 20 (39.2%) and 19 (37.3%) isolates, respectively. Overall, 43 isolates (84.3%) carried ß-lactamase genes, out of which 31 (60.8%) harbored bla AmpC , 20 (39.2%) had bla TEM and 11 (21.6%) carried bla PER -1 genes. Among the AmpC producers, two isolates (6.5%) carried bla AmpC + bla ESBL , 13 (41.9%) had bla AmpC + bla MBL and six (19.4%) produced the three enzymes. CONCLUSIONS: A high prevalence of multiple ß-lactamase production was observed among the AmpC producers (60%), of which the majority co-produced AmpC and MBL. The current study results showed correlation between ß-lactamase production and the presence of antibiotic resistance genes in the isolates.

14.
J Immunotoxicol ; 11(1): 50-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23662744

RESUMEN

In nature, essential oils play an important role in the protection of the plants by exerting anti-bacterial, -viral, -fungal, -oxidative, -genotoxic, and free radical scavenging properties, as well as in some cases acting as insecticides. Several Satureja species are used in traditional medicine due to recognized therapeutic properties, namely anti-microbial and cytotoxic activities. The purpose of the present work was to determine the biologic activity of the essential oil of S. khuzistanica Jamzad (Lamiaceae) against four human cancer cell lines, as well as its inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. The essential oil was isolated by hydro-distillation and analyzed by GC-FID and GC-MS. Carvacrol (92.87%) and limonene (1.2%) were found to be the main components of the isolated oil. Anti-microbial activity of the essential oil was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test effects of the oil on each cancer cell line. The oil exhibited considerable anti-microbial activity against the majority of the tested bacteria and fungi. The test oil also significantly reduced cell viability of Vero, SW480, MCF7, and JET 3 cells in a dose-dependent manner, with the IC50 values calculated for each cell type being, respectively, 31.2, 62.5, 125, and 125 µg/ml. Based on the findings, it is concluded that the essential oil of S. khuzistanica and its major constituents have a potential for further use in anti-bacterial and anti-cancer applications, pending far more extensive testing of toxicities in normal (i.e. primary) cells.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Bacterias/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Ciclohexenos/uso terapéutico , Hongos/efectos de los fármacos , Monoterpenos/uso terapéutico , Satureja/inmunología , Terpenos/uso terapéutico , Animales , Bacterias/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cimenos , Femenino , Hongos/crecimiento & desarrollo , Humanos , Limoneno , Células MCF-7 , Medicina Tradicional de Asia Oriental , Aceites Volátiles/farmacología , Células Vero
15.
J Microbiol Methods ; 64(1): 132-4, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15927292

RESUMEN

A modification of the iodometric technique using an overlay gel was employed for fast identification and isolation of beta-lactamase types TEM, SHV and AmpC from non-denaturing gels. Osmotic shock preparations of the three beta-lactamases were run on polyacrylamide gels without SDS and ampicillin containing overlay gels were flooded with the iodine solution before being placed on polyacrylamide gel strips. Distinct clear bands appeared in dark blue backgrounds indicating beta-lactamase activity.


Asunto(s)
Antibacterianos/metabolismo , Lactamas/metabolismo , Coloración y Etiquetado/métodos , beta-Lactamasas/clasificación , beta-Lactamasas/aislamiento & purificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Farmacorresistencia Bacteriana/fisiología , Electroforesis en Gel de Poliacrilamida/métodos , Yodo/metabolismo , Lactamas/farmacología , Almidón/metabolismo , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...