Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Genome Biol ; 25(1): 134, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783307

RESUMEN

The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Monodelphis/genética , Monodelphis/metabolismo
2.
Front Microbiol ; 14: 1274068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789858

RESUMEN

Halophilic archaea (haloarchaea) are known to exhibit multiple chromosomes, with one main chromosome and one or several smaller secondary chromosomes or megaplasmids. Halorubrum lacusprofundi, a model organism for studying cold adaptation, exhibits one secondary chromosome and one megaplasmid that include a large arsenal of virus defense mechanisms. We isolated a virus (Halorubrum tailed virus DL1, HRTV-DL1) infecting Hrr. lacusprofundi, and present an in-depth characterization of the virus and its interactions with Hrr. lacusprofundi. While studying virus-host interactions between Hrr. lacusprofundi and HRTV-DL1, we uncover that the strain in use (ACAM34_UNSW) lost the entire megaplasmid and about 38% of the secondary chromosome. The loss included the majority of virus defense mechanisms, making the strain sensitive to HRTV-DL1 infection, while the type strain (ACAM34_DSMZ) appears to prevent virus replication. Comparing infection of the type strain ACAM34_DSMZ with infection of the laboratory derived strain ACAM34_UNSW allowed us to identify host responses to virus infection that were only activated in ACAM34_UNSW upon the loss of virus defense mechanisms. We identify one of two S-layer proteins as primary receptor for HRTV-DL1 and conclude that the presence of two different S-layer proteins in one strain provides a strong advantage in the arms race with viruses. Additionally, we identify archaeal homologs to eukaryotic proteins potentially being involved in the defense against virus infection.

3.
Front Microbiol ; 14: 1169870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601354

RESUMEN

Pertussis, commonly known as whooping cough is a severe respiratory disease caused by the bacterium, Bordetella pertussis. Despite widespread vaccination, pertussis resurgence has been observed globally. The development of the current acellular vaccine (ACV) has been based on planktonic studies. However, recent studies have shown that B. pertussis readily forms biofilms. A better understanding of B. pertussis biofilms is important for developing novel vaccines that can target all aspects of B. pertussis infection. This study compared the proteomic expression of biofilm and planktonic B. pertussis cells to identify key changes between the conditions. Major differences were identified in virulence factors including an upregulation of toxins (adenylate cyclase toxin and dermonecrotic toxin) and downregulation of pertactin and type III secretion system proteins in biofilm cells. To further dissect metabolic pathways that are altered during the biofilm lifestyle, the proteomic data was then incorporated into a genome scale metabolic model using the Integrative Metabolic Analysis Tool (iMAT). The generated models predicted that planktonic cells utilised the glyoxylate shunt while biofilm cells completed the full tricarboxylic acid cycle. Differences in processing aspartate, arginine and alanine were identified as well as unique export of valine out of biofilm cells which may have a role in inter-bacterial communication and regulation. Finally, increased polyhydroxybutyrate accumulation and superoxide dismutase activity in biofilm cells may contribute to increased persistence during infection. Taken together, this study modeled major proteomic and metabolic changes that occur in biofilm cells which helps lay the groundwork for further understanding B. pertussis pathogenesis.

4.
Methods Mol Biol ; 2644: 193-209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142923

RESUMEN

Cellular health, functionality, response to environment, and other variables affecting cell, tissue, or organ viability are reflected in the cellular proteomes and metabolomes. These "omic" profiles are in constant flux even during normal cellular functioning, to maintain cellular homeostasis, in response to small environmental changes and maintenance of optimal cell viability. However proteomic "fingerprints" can also provide insight into cellular ageing, response to disease, adjustment to environmental changes, and other variables that impact cellular viability. A variety of proteomic methods can be used to determine qualitative and quantitative proteomic change. In this chapter, we will focus on a labeling method called isobaric tags for relative and absolute quantification (iTRAQ), which is frequently used to identify and quantify proteomic expression changes in cells and tissues.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Supervivencia Celular , Marcaje Isotópico/métodos
5.
Front Cell Infect Microbiol ; 11: 660280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928046

RESUMEN

The Bordetella genus is divided into two groups: classical and non-classical. Bordetella pertussis, Bordetella bronchiseptica and Bordetella parapertussis are known as classical bordetellae, a group of important human pathogens causing whooping cough or whooping cough-like disease and hypothesized to have evolved from environmental non-classical bordetellae. Bordetella infections have increased globally driving the need to better understand these pathogens for the development of new treatments and vaccines. One unexplored component in Bordetella is the role of serine, threonine and tyrosine phosphorylation. Therefore, this study characterized the phosphoproteome of classical bordetellae and examined its potential role in Bordetella biology and virulence. Applying strict identification of localization criteria, this study identified 70 unique phosphorylated proteins in the classical bordetellae group with a high degree of conservation. Phosphorylation was a key regulator of Bordetella metabolism with proteins involved in gluconeogenesis, TCA cycle, amino acid and nucleotide synthesis significantly enriched. Three key virulence pathways were also phosphorylated including type III secretion system, alcaligin synthesis and the BvgAS master transcriptional regulatory system for virulence genes in Bordetella. Seven new phosphosites were identified in BvgA with 6 located in the DNA binding domain. Of the 7, 4 were not present in non-classical bordetellae. This suggests that serine/threonine phosphorylation may play an important role in stabilizing/destabilizing BvgA binding to DNA for fine-tuning of virulence gene expression and that BvgA phosphorylation may be an important factor separating classical from non-classical bordetellae. This study provides the first insight into the phosphoproteome of classical Bordetella species and the role that Ser/Thr/Tyr phosphorylation may play in Bordetella biology and virulence.


Asunto(s)
Serina , Treonina , Proteínas Bacterianas/metabolismo , Biología , Humanos , Fosforilación , Tirosina , Virulencia
6.
Leukemia ; 35(11): 3101-3112, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33895784

RESUMEN

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk ALL subtype with high rates of relapse and poor patient outcome. Activating mutations affecting components of the JAK-STAT signaling pathway occur in the majority of Ph-like ALL cases. The use of JAK inhibitors represents a potential treatment option for Ph-like ALL, although we and others have shown that CRLF2-rearranged Ph-like ALL responds poorly to single-agent JAK inhibitors in the preclinical setting. Therefore, the aim of this study was to identify effective combination treatments against CRLF2-rearranged Ph-like ALL, and to elucidate the underlying mechanisms of synergy. We carried out a series of high-throughput combination drug screenings and found that ruxolitinib exerted synergy with standard-of-care drugs used in the treatment of ALL. In addition, we investigated the molecular effects of ruxolitinib on Ph-like ALL by combining mass spectrometry phosphoproteomics with gene expression analysis. Based on these findings, we conducted preclinical in vivo drug testing and demonstrated that ruxolitinib enhanced the in vivo efficacy of an induction-type regimen consisting of vincristine, dexamethasone, and L-asparaginase in 2/3 CRLF2-rearranged Ph-like ALL xenografts. Overall, our findings support evaluating the addition of ruxolitinib to conventional induction regimens for the treatment of CRLF2-rearranged Ph-like ALL.


Asunto(s)
Reordenamiento Génico , Nitrilos/farmacología , Preparaciones Farmacéuticas/administración & dosificación , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/farmacología , Pirimidinas/farmacología , Receptores de Citocinas/genética , Animales , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cardiovasc Res ; 117(11): 2395-2406, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-33508088

RESUMEN

AIMS: In-stent restenosis and late stent thrombosis are complications associated with the use of metallic and drug-coated stents. Strategies that inhibit vascular smooth muscle cell (SMC) proliferation without affecting endothelial cell (EC) growth would be helpful in reducing complications arising from percutaneous interventions. SMC hyperplasia is also a pathologic feature of graft stenosis and fistula failure. Our group previously showed that forced expression of the injury-inducible zinc finger (ZNF) transcription factor, yin yang-1 (YY1), comprising 414 residues inhibits neointima formation in carotid arteries of rabbits and rats. YY1 inhibits SMC proliferation without affecting EC growth in vitro. Identifying a shorter version of YY1 retaining cell-selective inhibition would make it more amenable for potential use as a gene therapeutic agent. METHODS AND RESULTS: We dissected YY1 into a range of shorter fragments (YY1A-D, YY1Δ) and found that the first two ZNFs in YY1 (construct YY1B, spanning 52 residues) repressed SMC proliferation. Receptor binding domain analysis predicts a three-residue (339KLK341) interaction domain. Mutation of 339KLK341 to 339AAA341 in YY1B (called YY1Bm) abrogated YY1B's ability to inhibit SMC but not EC proliferation and migration. Incubation of recombinant GST-YY1B and GST-YY1Bm with SMC lysates followed by precipitation with glutathione-agarose beads and mass spectrometric analysis identified a novel interaction between YY1B and BASP1. Overexpression of BASP1, like YY1, inhibited SMC but not EC proliferation and migration. BASP1 siRNA partially rescued SMC from growth inhibition by YY1B. In the rat carotid balloon injury model, adenoviral overexpression of YY1B, like full-length YY1, reduced neointima formation, whereas YY1Bm had no such effect. CD31+ immunostaining suggested YY1B could increase re-endothelialization in a 339KLK341-dependent manner. CONCLUSION: These studies identify a truncated form of YY1 (YY1B) that can interact with BASP1 and inhibit SMC proliferation, migration, and intimal hyperplasia after balloon injury of rat carotid arteries as effectively as full length YY1. We demonstrate the therapeutic potential of YY1B in vascular proliferative disease.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Traumatismos de las Arterias Carótidas/terapia , Proliferación Celular , Proteínas del Citoesqueleto/metabolismo , Terapia Genética , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción YY1/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Bovinos , Células Cultivadas , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Hiperplasia , Proteínas de la Membrana/genética , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Conejos , Ratas , Proteínas Represoras/genética , Transducción de Señal , Factor de Transcripción YY1/genética
8.
J Proteome Res ; 20(2): 1261-1279, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33471535

RESUMEN

Human plasma is one of the most widely used tissues in clinical analysis, and plasma-based biomarkers are used for monitoring patient health status and/or response to medical treatment to avoid unnecessary invasive biopsy. Data-driven plasma proteomics has suffered from a lack of throughput and detection sensitivity, largely due to the complexity of the plasma proteome and in particular the enormous quantitative dynamic range, estimated to be between 9 and 13 orders of magnitude between the lowest and the highest abundance protein. A major challenge is to identify workflows that can achieve depth of plasma proteome coverage while minimizing the complexity of the sample workup and maximizing the sample throughput. In this study, we have performed intensive depletion of high-abundant plasma proteins or enrichment of low-abundant proteins using the Agilent multiple affinity removal liquid chromatography (LC) column-Human 6 (Hu6), the Agilent multiple affinity removal LC column-Human 14 (Hu14), and ProteoMiner followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE) and C18 prefractionation techniques. We compared the performance of each of these fractionation approaches to identify the method that satisfies requirements for analysis of clinical samples and to include good plasma proteome coverage in combination with reasonable sample output. In this study, we report that one-dimensional (1D) gel-based prefractionation allows parallel sample processing and no loss of proteome coverage, compared with serial chromatographic separation, and significantly accelerates analysis time, particularly important for large clinical projects. Furthermore, we show that a variety of methodologies can achieve similarly high plasma proteome coverage, allowing flexibility in method selection based on project-specific needs. These considerations are important in the effort to accelerate plasma proteomics research so as to provide efficient, reliable, and accurate diagnoses, population-based health screening, clinical research studies, and other clinical work.


Asunto(s)
Proteínas Sanguíneas , Proteoma , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Proteómica
9.
Metabolites ; 10(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322613

RESUMEN

Milk lipids are known for a variety of biological functions, however; little is known about compositional variation across breeds, especially for Jaffarabadi buffalo, an indigenous Indian breed. Systematic profiling of extracted milk lipids was performed by mass spectrometry across summer and winter in Holstein Friesian cow and Jaffarabadi buffalo. Extensive MS/MS spectral analysis for the identification (ID) of probable lipid species using software followed by manual verification and grading of each assigned lipid species enabled ID based on (a) parent ion, (b) head group, and (c) partial/full acyl characteristic ions for comparative profiling of triacylglycerols between the breeds. Additionally, new triacylglycerol species with short-chain fatty acids were reported by manual interpretation of MS/MS spectra and comparison with curated repositories. Collectively, 1093 triacylglycerol species belonging to 141 unique sum compositions between the replicates of both the animal groups were identified. Relative quantitation at sum composition level followed by statistical analyses revealed changes in relative abundances of triacylglycerol species due to breed, season, and interaction effect of the two. Significant changes in triacylglycerols were observed between breeds (81%) and seasons (59%). When the interaction effect is statistically significant, a higher number of triacylglycerols species in Jaffarabadi has lesser seasonal variation than Holstein Friesian.

10.
Sci Adv ; 6(31): eaaz7815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32923607

RESUMEN

Vascular permeability and angiogenesis underpin neovascular age-related macular degeneration and diabetic retinopathy. While anti-VEGF therapies are widely used clinically, many patients do not respond optimally, or at all, and small-molecule therapies are lacking. Here, we identified a dibenzoxazepinone BT2 that inhibits endothelial cell proliferation, migration, wound repair in vitro, network formation, and angiogenesis in mice bearing Matrigel plugs. BT2 interacts with MEK1 and inhibits ERK phosphorylation and the expression of FosB/ΔFosB, VCAM-1, and many genes involved in proliferation, migration, angiogenesis, and inflammation. BT2 reduced retinal vascular leakage following rat choroidal laser trauma and rabbit intravitreal VEGF-A165 administration. BT2 suppressed retinal CD31, pERK, VCAM-1, and VEGF-A165 expression. BT2 reduced retinal leakage in rats at least as effectively as aflibercept, a first-line therapy for nAMD/DR. BT2 withstands boiling or autoclaving and several months' storage at 22°C. BT2 is a new small-molecule inhibitor of vascular permeability and angiogenesis.


Asunto(s)
Permeabilidad Capilar , Molécula 1 de Adhesión Celular Vascular , Inhibidores de la Angiogénesis/farmacología , Animales , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Conejos , Ratas , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Mol Cancer Res ; 18(12): 1767-1776, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32801162

RESUMEN

Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) is characterized by aberrant activation of signaling pathways and high risk of relapse. Approximately 50% of Ph-like ALL cases overexpress cytokine receptor-like factor 2 (CRLF2) associated with gene rearrangement. Activated by its ligand thymic stromal lymphopoietin (TSLP), CRLF2 signaling is critical for the development, proliferation, and survival of normal lymphocytes. To examine activation of tyrosine kinases regulated by TSLP/CRLF2, phosphotyrosine (P-Tyr) profiling coupled with stable isotope labeling of amino acids in cell culture (SILAC) was conducted using two CRLF2-rearranged (CRLF2r) Ph-like ALL cell lines stimulated with TSLP. As a result, increased P-Tyr was detected in previously reported TSLP-activated tyrosine kinases and substrates, including JAK1, JAK2, STAT5, and ERK1/2. Interestingly, TSLP also increased P-Tyr of insulin growth factor 1 receptor (IGF1R) and fibroblast growth factor receptor 1 (FGFR1), both of which can be targeted with small-molecule inhibitors. Fixed-ratio combination cytotoxicity assays using the tyrosine kinase inhibitors BMS-754807 and ponatinib that target IGF1R and FGFR1, respectively, revealed strong synergy against both cell line and patient-derived xenograft (PDX) models of CRLF2r Ph-like ALL. Further analyses also indicated off-target effects of ponatinib in the synergy, and novel association of the Ras-associated protein-1 (Rap1) signaling pathway with TSLP signaling in CRLF2r Ph-like ALL. When tested in vivo, the BMS-754807/ponatinib combination exerted minimal efficacy against 2 Ph-like ALL PDXs, associated with low achievable plasma drug concentrations. Although this study identified potential new targets in CRLF2r Ph-like ALL, it also highlights that in vivo validation of synergistic drug interactions is essential. IMPLICATION: Quantitative phosphotyrosine profiling identified potential therapeutic targets for high-risk CRLF2-rearranged Ph-like ALL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Imidazoles/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/administración & dosificación , Piridazinas/administración & dosificación , Receptores de Citocinas/genética , Triazinas/administración & dosificación , Tirosina/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Sinergismo Farmacológico , Femenino , Reordenamiento Génico , Humanos , Imidazoles/farmacología , Marcaje Isotópico , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Pirazoles/farmacología , Piridazinas/farmacología , Factor de Transcripción STAT5/metabolismo , Triazinas/farmacología , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Vaccine ; 38(3): 539-548, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31703933

RESUMEN

Since acellular vaccines (ACV) were introduced in Australia, epidemic Bordetella pertussis strains changed from single nucleotide polymorphism (SNP) cluster II to SNP cluster I. Our previous proteomic analysis identified potential proteomic adaptations in the whole cell and secretome of SNP cluster I. Additionally, current ACVs were shown to be less efficacious against cluster I in mice models and there is a pressing need to discover new antigens to improve the ACV. One important source of novel antigens is the surfaceome. Therefore, in this study we established surface shaving in B. pertussis to compare the surfaceome of SNP cluster I (L1423) and II (L1191), and identify novel surface antigens for vaccine development. Surface shaving using 1 µg of trypsin for 5 min identified 126 proteins with the most abundant being virulence-associated and known outer membrane proteins. Cell viability counts showed minimal lysis from shaving. The proportion of immunogenic proteins was higher in the surfaceome than in the whole cell and secretome. Key differences in the surfaceome were identified between SNP cluster I and II, consistent with those identified in the whole cell proteome and secretome. These differences include unique transport proteins and decreased immunogenic proteins in L1423, and provides further evidence of proteomic adaptation in SNP cluster I. Finally, a comparison of proteins in each sub-proteome identified 22 common proteins. These included 11 virulence proteins (Prn, PtxA, FhaB, CyaA, TcfA, SphB1, Vag8, BrkA, BopD, Bsp22 and BipA) and 11 housekeeping proteins (TuF, CtpA, TsF, OmpH, GltA, SucC, SucD, FusA, GroEL, BP3330 and BP3561) which were immunogenic, essential and consistently expressed thus demonstrating their potential as future targets. This study established surface shaving in B. pertussis, confirmed key expression differences and identified unknown surface proteins which may be potential vaccine antigens.


Asunto(s)
Antígenos Bacterianos/inmunología , Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/inmunología , Proteómica/métodos , Factores de Virulencia de Bordetella/inmunología , Australia/epidemiología , Proteínas de la Membrana Bacteriana Externa/inmunología , Bordetella pertussis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Relación Dosis-Respuesta a Droga , Epidemias/prevención & control , Humanos , Vacuna contra la Tos Ferina/administración & dosificación , Tripsina/farmacología , Tos Ferina/epidemiología , Tos Ferina/inmunología , Tos Ferina/prevención & control
13.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31253704

RESUMEN

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Asunto(s)
Halorubrum/fisiología , Metagenoma , Nanoarchaeota/fisiología , Simbiosis/fisiología , Regiones Antárticas , ADN de Archaea/genética , ADN de Archaea/aislamiento & purificación , Citometría de Flujo , Genoma Arqueal/genética , Halorubrum/ultraestructura , Metagenómica , Microscopía Electrónica de Transmisión , Nanoarchaeota/ultraestructura , Filogenia , Salinidad
14.
Biochem Biophys Res Commun ; 510(3): 345-351, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30711252

RESUMEN

Egr-1, an immediate-early gene product and master regulator was originally described as a phosphoprotein following its discovery in the 1980s. However specific residue(s) phosphorylated in Egr-1 remain elusive. Here we phosphorylated recombinant Egr-1 in vitro with ERK1 prior to mass spectrometry, which identified phosphorylation of Ser12 and Ser26 with the latter ∼12 times more abundant than Ser12. Phosphorylation of wild-type recombinant Egr-1 (as compared with Ser26>Ala26 mutant Egr-1) revealed that Ser26 accounts for the majority of phosphorylation of Egr-1 by ERK1. N-FGSFPH(pS)PTMDNYC-C was used as an antigen to generate mouse monoclonal antibodies (pS26 MAb). pS26 MAb recognised ERK1-phosphorylated Egr-1 but not Egr-1 bearing a point mutation at Ser26. pS26 MAb recognised inducible ∼75 kDa and 100 kDa species in nuclear extracts of cells exposed to FGF-2. Peptide blocking revealed both inducible species were phosphosite-specific. Immunoprecipitation of nuclear extracts of cells exposed to FGF-2 with pS26 MAb followed by SDS-PAGE and mass spectrometry identified Egr-1 sequences corresponding to the ∼75 kDa species but not ∼100 kDa species. This study identifies a specific amino acid phosphorylated in endogenous Egr-1.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/química , Proteína 1 de la Respuesta de Crecimiento Precoz/inmunología , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Ratas , Alineación de Secuencia , Serina/metabolismo
15.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658981

RESUMEN

The canonical pathway for sucrose metabolism in haloarchaea utilizes a modified Embden-Meyerhof-Parnas pathway (EMP), in which ketohexokinase and 1-phosphofructokinase phosphorylate fructose released from sucrose hydrolysis. However, our survey of haloarchaeal genomes determined that ketohexokinase and 1-phosphofructokinase genes were not present in all species known to utilize fructose and sucrose, thereby indicating that alternative mechanisms exist for fructose metabolism. A fructokinase gene was identified in the majority of fructose- and sucrose-utilizing species, whereas only a small number possessed a ketohexokinase gene. Analysis of a range of hypersaline metagenomes revealed that haloarchaeal fructokinase genes were far more abundant (37 times) than haloarchaeal ketohexokinase genes. We used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase) and identified changes in protein abundance that relate to growth on sucrose. Proteins inferred to be involved in sucrose metabolism included fructokinase, a carbohydrate primary transporter, a putative sucrose hydrolase, and two uncharacterized carbohydrate-related proteins encoded in the same gene cluster as fructokinase and the transporter. Homologs of these proteins were present in the genomes of all haloarchaea that use sugars for growth. Enzymes involved in the semiphosphorylative Entner-Doudoroff pathway also had higher abundances in sucrose-grown H. litchfieldiae cells, consistent with this pathway functioning in the catabolism of the glucose moiety of sucrose. The study revises the current understanding of fundamental pathways for sugar utilization in haloarchaea and proposes alternatives to the modified EMP pathway used by haloarchaea for sucrose and fructose utilization.IMPORTANCE Our ability to infer the function that microorganisms perform in the environment is predicated on assumptions about metabolic capacity. When genomic or metagenomic data are used, metabolic capacity is inferred from genetic potential. Here, we investigate the pathways by which haloarchaea utilize sucrose. The canonical haloarchaeal pathway for fructose metabolism involving ketohexokinase occurs only in a small proportion of haloarchaeal genomes and is underrepresented in metagenomes. Instead, fructokinase genes are present in the majority of genomes/metagenomes. In addition to genomic and metagenomic analyses, we used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase but lacks ketohexokinase) and identified changes in protein abundance that related to growth on sucrose. In this way, we identified novel proteins implicated in sucrose metabolism in haloarchaea, comprising a transporter and various catabolic enzymes (including proteins that are annotated as hypothetical).


Asunto(s)
Euryarchaeota/metabolismo , Sacarosa/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Euryarchaeota/genética , Fructoquinasas/genética , Fructoquinasas/metabolismo , Genoma Arqueal , Genómica , Glucólisis , Metagenómica , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Fosforilación , Proteómica
16.
Front Microbiol ; 9: 2851, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538686

RESUMEN

Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains.

17.
Proteomics ; 18(8): e1700237, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464899

RESUMEN

Bordetella pertussis causes whooping cough. The predominant strains in Australia changed to single nucleotide polymorphism (SNP) cluster I (pertussis toxin promoter allele ptxP3/pertactin gene allele prn2) from cluster II (non-ptxP3/non-prn2). Cluster I was mostly responsible for the 2008-2012 Australian epidemic and was found to have higher fitness compared to cluster II using an in vivo mouse competition assay, regardless of host's immunization status. This study aimed to identify proteomic differences that explain higher fitness in cluster I using isobaric tags for relative and absolute quantification (iTRAQ), and high-resolution multiple reaction monitoring (MRM-hr). A few key differences in the whole cell and secretome were identified between the cluster I and II strains tested. In the whole cell, nine proteins were upregulated (>1.2 fold change, q < 0.05) and three were downregulated (<0.8 fold change, q < 0.05) in cluster I. One downregulated protein was BP1569, a TLR2 agonist for Th1 immunity. In the secretome, 12 proteins were upregulated and 1 was downregulated which was Bsp22, a type III secretion system (T3SS) protein. Furthermore, there was a trend of downregulation in three T3SS effectors and other virulence factors. Three proteins were upregulated in both whole cell and supernatant: BP0200, molybdate ABC transporter (ModB), and tracheal colonization factor A (TcfA). Important expression differences in lipoprotein, T3SS, and transport proteins between the cluster I and II strains were identified. These differences may affect immune evasion, virulence and metabolism, and play a role in increased fitness of cluster I.


Asunto(s)
Proteínas Bacterianas/genética , Bordetella pertussis/genética , Regulación Bacteriana de la Expresión Génica , Tos Ferina/microbiología , Australia/epidemiología , Proteínas de la Membrana Bacteriana Externa/genética , Bordetella pertussis/fisiología , Humanos , Toxina del Pertussis/genética , Polimorfismo de Nucleótido Simple , Proteómica/métodos , Sistemas de Secreción Tipo III/genética , Factores de Virulencia de Bordetella/genética , Tos Ferina/epidemiología
18.
Nat Microbiol ; 2(10): 1446-1455, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28827601

RESUMEN

The major difference between viruses and plasmids is the mechanism of transferring their genomic information between host cells. Here, we describe the archaeal plasmid pR1SE from an Antarctic species of haloarchaea that transfers via a mechanism similar to a virus. pR1SE encodes proteins that are found in regularly shaped membrane vesicles, and the vesicles enclose the plasmid DNA. The released vesicles are capable of infecting a plasmid-free strain, which then gains the ability to produce plasmid-containing vesicles. pR1SE can integrate and replicate as part of the host genome, resolve out with fragments of host DNA incorporated or portions of the plasmid left behind, form vesicles and transfer to new hosts. The pR1SE mechanism of transfer of DNA could represent the predecessor of a strategy used by viruses to pass on their genomic DNA and fulfil roles in gene exchange, supporting a strong evolutionary connection between plasmids and viruses.


Asunto(s)
Archaea/genética , Virus de Archaea/genética , Halorubrum/genética , Plásmidos/genética , Virus/genética , Regiones Antárticas , Replicación del ADN , ADN de Archaea/genética , ADN de Archaea/metabolismo , Evolución Molecular , Genoma Viral , Halorubrum/aislamiento & purificación , Halorubrum/ultraestructura , Interacciones Huésped-Patógeno/genética , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Vesículas Transportadoras , Proteínas Virales/genética
19.
J Proteome Res ; 16(7): 2359-2369, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28580786

RESUMEN

Tandem mass spectrometry is one of the most popular techniques for quantitation of proteomes. There exists a large variety of options in each stage of data preprocessing that impact the bias and variance of the summarized protein-level values. Using a newly released data set satisfying a replicated Latin squares design, a diverse set of performance metrics has been developed and implemented in a web-based application, Quantitative Performance Evaluator for Proteomics (QPEP). QPEP has the flexibility to allow users to apply their own method to preprocess this data set and share the results, allowing direct and straightforward comparison of new methodologies. Application of these new metrics to three case studies highlights that (i) the summarization of peptides to proteins is robust to the choice of peptide summary used, (ii) the differences between iTRAQ labels are stronger than the differences between experimental runs, and (iii) the commercial software ProteinPilot performs equivalently well at between-sample normalization to more complicated methods developed by academics. Importantly, finding (ii) underscores the benefits of using the principles of randomization and blocking to avoid the experimental measurements being confounded by technical factors. Data are available via ProteomeXchange with identifier PXD003608.


Asunto(s)
Péptidos/análisis , Proteoma/análisis , Proteómica/estadística & datos numéricos , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Programas Informáticos , Espectrometría de Masas en Tándem/normas , Benchmarking , Internet , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/química
20.
J Proteomics ; 158: 43-51, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28242451

RESUMEN

Our understanding of the Bordetella pertussis secretome remains limited including the role of different growth conditions in the secretome. In this study the secretome of L1423, a clinical isolate from the 2008-2012 Australian epidemic, cultured on Stainer-Scholte (SS) and Thalen-IJssel (THIJS) media for 12h was characterised using liquid chromatography-mass spectrometry (LC-MS/MS). In the supernatant, LC-MS/MS identified 260 proteins with 143 bioinformatically predicted to be secreted. Eighty percent of proteins were identified in both media. Proteins secreted were functionally associated with cell surface (41%), pathogenicity (16%) and transport (17%). The most abundant proteins identified were pathogenic proteins including toxins (PtxA and CyaA), adhesins (TcfA) and type III secretion (T3SS) proteins. There were 46 proteins found uniquely in THIJS including 8 virulence associated proteins. These included T3SS proteins, adhesins (FhaL and FhaS) and a putative toxin (BP1251). Nine proteins were found uniquely in SS and these were metabolic and transport-related proteins. None of the unique proteins detected in SS were known to be virulence associated. This study found that THIJS promotes secretion of virulence factors based on the number of unique virulence proteins found and may be a growth media of choice for the study of B. pertussis virulence and vaccine development. BIOLOGICAL SIGNIFICANCE: Over the past two decades, the number of B. pertussis notifications has risen despite vaccination. There is a greater need to understand the biology behind B. pertussis infections. The secretome of B. pertussis in two different media was characterised using LC-MS/MS. The results showed that THIJS promotes secretion of importance virulence factors which may be important for the development of vaccines.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella pertussis/metabolismo , Medios de Cultivo/química , Proteoma/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...