RESUMEN
REF-FTP78 is a class IIb medical device present on the market with different trade names and developed for the treatment of gastroesophageal reflux disease (GERD). This medical device is based on polysaccharides from Aloe Barbadensis and fucoidans from brown seaweeds, such as Undaria pinnatifida and Fucus vesiculosus, and aims to exert a protective effect on the esophageal mucosa against the noxious components of refluxate. The present study reports on the efficacy of REF-FTP78 devoting a particular attention to the barrier effect and wound healing properties, combined with antioxidant and anti-inflammatory activities. Film-forming properties and barrier effect were investigated on in vitro reconstructed human esophageal epithelium, through TEER measurement and evaluation of caffeine and Lucifer yellow permeability, and in an ex vivo swine model of esophageal mucosa damage. Antioxidant and anti-inflammatory properties were evaluated in terms of scavenging activity towards DPPH, ABTS and NO radicals and a wound healing assay was carried out to study the influence of the product on cell migration. The obtained results highlighted a significant barrier effect, with a reduction in caffeine penetration equal to 65.3%, the ability to both repair and prevent the damage caused by an acid insult, confirmed by a good transepithelial resistance for the tissue treated with the tested item, and the capacity to promote wound healing. Furthermore, the tested product showed good antioxidant and anti-inflammatory properties in the performed radical scavenging assays. These findings support the use of REF-FTP78 in the treatment of GERD.
Asunto(s)
Antioxidantes , Reflujo Gastroesofágico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cafeína/uso terapéutico , Reflujo Gastroesofágico/tratamiento farmacológico , Porcinos , Cicatrización de HeridasRESUMEN
Background: The study aimed at assessing the mucoadhesive properties and the barrier effect of a formulation, labelled as AL2106, containing sodium chondroitin sulfate (ChS), xyloglucan from tamarind seed extract, and glycerol, by evaluating the capacity to adhere to a layer of mucin, the rheological synergism and the barrier effect in comparison to the marketed Esoxx One medical device. AL2106 is a medical device distributed by Alfasigma SpA, Italy with REF FTP57 (Manufacturer: Labomar SpA); it is analogous to Esoxx One medical device: the two products are drinkable solutions that, after swallowing, adhere to the esophageal mucosa, protecting it from the corrosive effect of the gastric acid reflux. AL2106 has been conceived to be better performing in terms of duration of the barrier effect compared to Esoxx One. Methods: The mucoadhesive properties, rheological behavior, buffering capacity against acidity, and film-forming ability with the resultant protecting effect on esophagus mucosa (caffeine permeation test) was compared between the two products. Results: The mucoadhesivity of the formulations was shown in vitro: both remained adherent to a mucin layer, also when the support was rotated by 90°, and when the film layer was washed with water, intended to simulate the washout due to swallowing. AL2106 showed a good buffering efficacy, being able to absorb at least 50% of its weight of 0.03 M HCl while maintaining the pH above 4. The film-forming effect and barrier properties of AL2106 and Esoxx One were confirmed by an in vitro study on reconstructed human esophageal epithelium. A greater film-forming efficacy of AL2106, lasting for at least 5 h, than Esoxx One was observed. Noteworthy, the barrier function of esophageal tissues was shown to be preserved after the application of both formulations. Conclusions: The combination of ChS with the mucoadhesive glycerol-xyloglucan complex and other excipients, which contribute to the barrier effect and to mucoadhesion, contained in AL2106, allowed a longer-lasting protective effect than Esoxx One, proving its effectivity and safety for oral use.
RESUMEN
Chitosan (CH) is a polymer of glucosamine that is extracted from the shells of several sea fruits. It is well recognized as a nutritional supplement that is used to reduce body weight and blood lipid levels, but its clinical efficacy has not been clearly demonstrated. The true mechanism of action and physiological processes involved in these properties of CH are not yet understood or explained. The most accepted theories assume that CH reduces dietary fat absorption by trapping the fat in the gastric lumen. The very low pH of the gastric lumen induces CH jellification and, therefore, entrapment of the fats. This article describes the most plausible mechanism by which CH interferes with fat absorption in the first part of the enteric tract while interacting with cholic acids. We emphasize the weak points of the classic CH-containing formulations, which are unable to prove this theory. We also report preliminary experimental data of a new CH salt-containing formulation that is capable of effectively interfering with bile salt emulsification processes and, as a result, reducing dietary fat absorption.