Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 124: 110553, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34161842

RESUMEN

Aquatic therapy for rehabilitation can be performed in a variety of environments, which can vary from a traditional swimming pool to a self-contained underwater treadmill. While kinematic analysis has been performed in large volume swimming pools using specific underwater motion capture systems, researchers may only have access to a land-based motion-capture system, which is not waterproof. Additionally, underwater motion capture systems may not fit within the confines of a smaller underwater treadmill. Thus, the purpose of this study was to design and analyze methodology to quantify lower limb kinematics during an aquatic treadmill session, using a land-based motion capture system. Kinematics of lower limb motion at different speeds was studied while walking on an underwater treadmill in comparison to walking on the same treadmill without water (empty tank). The effects of the presence of water on walking kinematics was analyzed and interpreted using parametric and non-parametric testing procedures. The results suggest significant influences of speed on knee and ankle angles (p < 0.05) in both dryland and aquatic scenarios. Knee and ankle angle measures revealed no significant differences between the dryland and water treadmill scenarios (p > 0.05). The increased time requirement in water for the full gait cycle found in this study indicates influence of resistive effects. This finding can be especially suited for muscle strengthening and stabilizing treatments for lower limbs. Also, a framework was developed to realize a potential methodology to use land-based motion capture cameras to successfully analyze the kinematics of gait in constrained aquatic volumes.


Asunto(s)
Marcha , Caminata , Fenómenos Biomecánicos , Prueba de Esfuerzo , Movimiento (Física)
2.
J Biomech ; 89: 139-142, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31030892

RESUMEN

While the capabilities of land-based motion capture systems in biomechanical applications have been previously reported, the possibility of using motion tracking systems externally to reconstruct markers submerged inside an aquatic environment has been under explored. This study assesses the ability of a motion capture system (Vicon T40s) arranged externally to track a retro-reflective marker inside a glass tank filled with water and without water. The reflective tape used for marker creation in this study was of Safety of Life at Sea (SOLAS) grade as the conventional marker loses its reflective properties when submerged. The overall trueness calculated based on the mean marker distance errors, varied between 0.257 mm and 0.290 mm in different mediums (air, glass and water). The overall precision calculated based on mean standard deviation of mean marker distances at different locations varied between 0.046 mm and 0.360 mm in different mediums. Our results suggest, that there is no significant influence of the presence of water on the overall static accuracy of the marker center distances when markers were made of SOLAS grade reflective tape. Using optical motion tracking systems for evaluating locomotion in aquatic environment can help to better understand the effects of aquatic therapy in clinical rehabilitation, especially in scenarios that involve equipment, such as an underwater treadmill which generally have constrained capture volumes for motion capture.


Asunto(s)
Movimiento (Física) , Dispositivos Ópticos , Agua , Algoritmos , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...