Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2015): 20232305, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228180

RESUMEN

Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.


Asunto(s)
Apicomplexa , Mariposas Diurnas , Calor Extremo , Parásitos , Animales , Humanos , Mariposas Diurnas/fisiología , Interacciones Huésped-Parásitos , Apicomplexa/fisiología
2.
Curr Opin Insect Sci ; 59: 101077, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37336490

RESUMEN

Since the 1960s, scientists have observed the North American monarch butterfly (Danaus plexippus) continuing reproductive activities past the fall migration and into the winter months when the climate is mild. Recent work suggests that small populations of winter breeding monarchs are present in western and southeastern USA, as well as northwestern Mexico, with new winter breeding populations forming in areas where non-native milkweeds are planted. The year-round presence of milkweed plants and temperatures suitable for immature monarch development are vital factors allowing for winter breeding. Non-native milkweeds, in conjunction with novel barriers to migration, are likely contributing to the rise in winter breeding behavior. Warmer climates are already impacting milkweed phenology and range, possibly favoring winter breeding behavior. Similar pressures but different implications are expected for eastern and western winter breeding monarchs given the differences in the migration ecology, milkweed species, and climate changes in the two regions.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Migración Animal , Fitomejoramiento , Ecología , América del Norte
3.
J Invertebr Pathol ; 183: 107544, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33582107

RESUMEN

Many parasites have external transmission stages that persist in the environment prior to infecting a new host. Understanding how long these stages can persist, and how abiotic conditions such as temperature affect parasite persistence, is important for predicting infection dynamics and parasite responses to future environmental change. In this study, we explored environmental persistence and thermal tolerance of a debilitating protozoan parasite that infects monarch butterflies. Parasite transmission occurs when dormant spores, shed by adult butterflies onto host plants and other surfaces, are later consumed by caterpillars. We exposed parasite spores to a gradient of ecologically-relevant temperatures for 2, 35, or 93 weeks. We tested spore viability by feeding controlled spore doses to susceptible monarch larvae, and examined relationships between temperature, time, and resulting infection metrics. We also examined whether distinct parasite genotypes derived from replicate migratory and resident monarch populations differed in their thermal tolerance. Finally, we examined evidence for a trade-off between short-term within-host replication and long-term persistence ability. Parasite viability decreased in response to warmer temperatures over moderate-to-long time scales. Individual parasite genotypes showed high heterogeneity in viability, but differences did not cluster by migratory vs. resident monarch populations. We found no support for a negative relationship between environmental persistence and within-host replication, as might be expected if parasites invest in short-term reproduction at the cost of longer-term survival. Findings here indicate that dormant spores can survive for many months under cooler conditions, and that heat dramatically shortens the window of transmission for this widespread and virulent butterfly parasite.


Asunto(s)
Apicomplexa/fisiología , Mariposas Diurnas/parasitología , Animales , Mariposas Diurnas/crecimiento & desarrollo , Femenino , Larva/crecimiento & desarrollo , Larva/parasitología , Masculino , Termotolerancia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...