Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 167: 112678, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087210

RESUMEN

In this study, the capacity of eight essential oils (EOs), sage (Salvia officinalis), coriander (Coriandrum sativum), rosemary (Rosmarinus officinalis), black cumin (Nigella sativa), prickly juniper (Juniperus oxycedrus), geranium (Pelargonium graveolens), oregano (Origanum vulgare) and wormwood (Artemisia herba-alba), on the inhibition of NF-κB activation was screened at concentrations up to 0.25 µL/mL using THP-1 human macrophages bearing a NF-κB reporter. This screening selected coriander, geranium, and wormwood EOs as the most active, which later evidenced the ability to decrease over 50 % IL-6, IL-1ß, TNF-α and COX-2 mRNA expression in LPS-stimulated THP-1 macrophages. The chemical composition of selected EOs was performed by gas chromatography-mass spectrometry (GC-MS). The two major constituents (>50 % of each EO) were tested at the same concentrations presented in each EO. It was demonstrated that the major compound or the binary mixtures of the two major compounds could explain the anti-inflammatory effects reported for the crude EOs. Additionally, the selected EOs also inhibit>50 % caspase-1 activity. However, this effect could not be attributed to the major components (except for ß-citronellol/geranium oil, 40 %/65 % caspase-1 inhibition), suggesting, in addition to potential synergistic effects, the presence of minor compounds with caspase-1 inhibitory activity. These results demonstrated the potential use of the EOs obtained from Tunisian flora as valuable sources of anti-inflammatory agents providing beneficial health effects by reducing the levels of inflammatory mediators involved in the genesis of several diseases.


Asunto(s)
Aceites Volátiles , Origanum , Plantas Medicinales , Humanos , Aceites Volátiles/química , FN-kappa B , Macrófagos , Origanum/química , Antiinflamatorios/farmacología , Caspasas
2.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364161

RESUMEN

This manuscript aimed to optimise the encapsulation of Thymus capitatus essential oil into nanoemulsion. Response Surface Methodology results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal nanoemulsion showed nanometer-sized droplets (380 nm), a polydispersity index less than 0.5, and a suitable Zeta potential (-10.3 mV). Stability results showed that nanoemulsions stored at 4 °C were stable with the lowest d3,2, PolyDispersity Index (PDI), and pH (day 11). Significant ameliorations in the capacity to neutralise DPPH radical after the encapsulation of the antimicrobial efficacy of thyme essential oil were recorded. S. typhimurium growth inhibition generated by nanoencapsulated thyme essential oil was 17 times higher than by bulk essential oil. The sensory analysis highlighted that the encapsulation of thyme essential oil improved enriched milk's sensory appreciation. Indeed, 20% of the total population attributed a score of 4 and 5 on the scale used for milk enriched with nanoemulsion. In comparison, only 11% attributed the same score to milk enriched with bulk essential oil. The novel nanometric delivery system presents significant interest for agroalimentary industries.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Thymus (Planta) , Animales , Aceites Volátiles/farmacología , Emulsiones , Antiinfecciosos/farmacología , Leche/microbiología
3.
Antioxidants (Basel) ; 10(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672283

RESUMEN

Using plant essential oils (EOs) contributes to the growing number of natural plants' applications in livestock. Scientific data supporting the efficacy of EOs as anti-inflammatory, antibacterial and antioxidant molecules accumulates over time; however, the cumulative evidence is not always sufficient. EOs antioxidant properties have been investigated mainly from human perspectives. Still, so far, our review is the first to combine the beneficial supporting properties of EOs in a One Health approach and as an animal product quality enhancer, opening new possibilities for their utilization in the livestock and nutrition sectors. We aim to compile the currently available data on the main anti-inflammatory effects of EOs, whether encapsulated or not, with a focus on mammary gland inflammation. We will also review the EOs' antioxidant activities when given in the diet or as a food preservative to counteract oxidative stress. We emphasize EOs' in vitro and in vivo ruminal microbiota and mechanisms of action to promote animal health and performance. Given the concept of DOHaD (Developmental Origin of Health and Diseases), supplementing animals with EOs in early life opens new perspectives in the nutrition sector. However, effective evaluation of the significant safety components is required before extending their use to livestock and veterinary medicine.

4.
J Food Drug Anal ; 25(2): 350-359, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28911677

RESUMEN

The antioxidant and antibacterial activities of phenolic compounds from cultivated and wild Tunisian Ruta chalepensis L. leaves, stems, and flowers were assessed. The leaves and the flowers exhibited high but similar total polyphenol, flavonoid, and tannin content. Moreover, two organs showed strong, although not significantly different, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl scavenging ability, and reducing power. Investigation of the phenolic composition showed that vanillic acid and coumarin were the major compounds in the two organs, with higher percentages in the cultivated organs than in the spontaneous organs. Furthermore, R. chalepensis extracts showed marked antibacterial properties against human pathogen strains, and the activity was organ- and origin-dependent. Spontaneous stems had the strongest activity against Pseudomonas aeruginosa. From these results, it was concluded that domestication of Ruta did not significantly affect its chemical composition and consequently the possibility of using R. chalpensis organs as a potential source of natural antioxidants and as an antimicrobial agent in the food industry.


Asunto(s)
Ruta , Antiinfecciosos , Antioxidantes , Compuestos de Bifenilo , Picratos , Extractos Vegetales
5.
J Food Drug Anal ; 25(2): 391-402, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28911682

RESUMEN

In this study, the effects of salinity on growth, fatty acid, essential oil, and phenolic composition of cumin (Cuminum cyminum L.) seeds as well as the antioxidant activities of their extracts were investigated. Plants were treated with different concentrations of NaCl treatment: 0, 50, 75, and 125 mmoL. Plant growth was significantly reduced with the severity of saline treatment. This also caused important reductions in the seed yield and yield components. Besides, NaCl treatments affected fatty acid composition. Petroselinic and linoleic acids proportions diminished consistently with the increase in NaCl concentration, whereas palmitic acid proportion increased. Furthermore, NaCl enhanced essential oil production in C. cyminum seeds and induced marked changes on the essential oil quality. Essential oil chemotype was modified from γ-terpinene/1-phenyl-1,2 ethanediol in control to γ-terpinene/ß-pinene in salt stressed plants. Total polyphenol content was higher in treated seeds, and salinity improved the amount of individual phenolic compounds. Moreover, antioxidant activities of the extracts were determined by four different test systems, namely 2,2-diphenyl-1-picrylhydrazyl, ß-carotene/linoleic acid chelating, and reducing power assays. The highest antioxidant activities were reveled in severe stressed plants. In this case, cumin seeds produced under saline conditions may function as a potential source of essential oil and antioxidant compounds, which could support the utilization of this plant in a large field of applications such as food industry.


Asunto(s)
Cuminum , Tolerancia a la Sal , Antioxidantes , Ácidos Grasos , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos , Aceites Volátiles , Extractos Vegetales , Semillas
6.
Phytochemistry ; 124: 58-67, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826740

RESUMEN

Giant fennel (Ferula communis L.) is well known in folk medicine for the treatment of various organ disorders. The biological importance of members of genus Ferula prompted us to investigate the leaves of the endangered Tunisian medicinal plant F. communis L. not previously investigated. An estimate of genetic diversity and differentiation between genotypes of breeding germplasm is of key importance for its improvement. Thus, four F. communis populations were RAPD fingerprinted (63 RAPD markers generated by 7 primers) and the composition of their leaf essential oils (EO) (134 EO compounds) was characterized by GC-MS. Cluster analysis based on the leaf volatiles chemical composition of F. communis accessions defined three chemotypes according to main compounds have been distinguished: α-eudesmol/ß-eudesmol/γ-terpinene; α-eudesmol/α-pinene/caryophyllene oxide and chamazulene/α-humulene chemotypes. A high genetic diversity within population and high genetic differentiation among them, based on RAPDs, were revealed (H(pop)=0.320 and GST=0.288) caused both by the habitat fragmentation, the low size of most populations and the low level of gene flow among them. The RAPD dendrogram showed separation of three groups. Populations dominated by individuals from the ß-eudesmol/γ-terpinene; chemotype showed the lowest gene diversity (H=0.104), while populations with exclusively α-pinene/caryophyllene oxide chemotype showed the highest value (H=0.285). The UPGMA dendrogram and PCA analysis based on volatiles yielded higher separation among populations, indicated specific adaptation of populations to the local environments. Correlation analysis showed a non-significant association between the distance matrices based on the genetic markers (RAPD) and chemical compounds of essential oil (P>0.05) indicating no influence of genetic background on the observed chemical profiles. These results reinforce the use of both volatile compounds and RAPD markers as a starting point for in situ conservation. The analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. Sufficient molecular and biochemical diversity detected among natural populations of this species will form the basis for the future improvement. The correlation between matrices of RAPD and essential oils was not significant. The conservation strategies of populations should be made according to their level of genetic and chemical diversity in relation to geographic location of populations. Our results give some insights into the characterization of this as yet little investigated plant.


Asunto(s)
Biodiversidad , Ferula/química , Aceites Volátiles/química , Aceites de Plantas/química , Plantas Medicinales/química , Terpenos/química , Terpenos/aislamiento & purificación , Monoterpenos Bicíclicos , Monoterpenos Ciclohexánicos , Ferula/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Sesquiterpenos Monocíclicos , Monoterpenos , Hojas de la Planta/química , Técnica del ADN Polimorfo Amplificado Aleatorio , Sesquiterpenos , Sesquiterpenos de Eudesmano
7.
ScientificWorldJournal ; 2012: 528593, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22645427

RESUMEN

The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90-90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63-69.71%), ß-pinene (0.63-31.49%), γ-terpinene (0.04-9.96%), and p-cymene (0.23-9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81-69.00%), 1,8-cineole (0.01-26.43%), and γ-terpinene (2.53-14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52-86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus.


Asunto(s)
Citrus/metabolismo , Aceites Volátiles/análisis , Aceites Volátiles/química , Antiinfecciosos/farmacología , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/análisis , Cromatografía de Gases/métodos , Monoterpenos Ciclohexánicos , Ciclohexanoles/análisis , Ciclohexenos/análisis , Cimenos , Escherichia coli/metabolismo , Eucaliptol , Frutas , Cromatografía de Gases y Espectrometría de Masas/métodos , Limoneno , Monoterpenos/análisis , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Terpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA