Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(31): 16180-16189, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39069666

RESUMEN

Lead-tin (Pb-Sn) mixed-halide perovskites show potential for single-junction and tandem solar cells due to their adjustable band gaps, flexible composition, and superior environmental stability compared to three-dimensional (3D) perovskites. However, they have lower power conversion efficiencies. Understanding band alignment and charge carrier dynamics is essential for enhancing photovoltaic performance. In this view, herein we have prepared thin films of mixed Pb-Sn-based two dimensional (2D) Ruddlesden-Popper (RP) perovskites BA2FA(Pb1-xSnx)2I7 using a solution-based method. XRD study revealed the formation of orthorhombic phases for pristine (BA2FAPb2I7) and mixed Pb-Sn perovskite thin films. UV-vis analysis showed that different n = 2 and n = 3 phases are present in the pristine sample. In contrast, Pb-Sn-doped samples showed no signature of other phases with a prominent red-shift in the visible spectral region. Cyclic voltammetry showed peaks for electron transfers at the band edges. Additionally, electrochemical and optical band gap matching was observed, along with decreased peak intensity due to less reactant and altered electrolyte-perovskite interface stability. Density functional theory (DFT) calculations revealed that the reduced band gap is due to the alteration of electrostatic interactions and charge distribution within the lattice upon Sn substitution. Low-temperature PL analysis provided insights into charge carrier dynamics with Sn substitution and suggested the suppression of higher n phases and self-trapped excitons/carriers in mixed Pb-Sn quasi-2D RP perovskite thin films. This study sheds light on the electron transfer phenomena between TiO2 and SnO2 layers by estimating band offsets from valence band maximum (VBM) and conduction band minimum (CBM), which is crucial for future applications in fabricating stable and efficient 2D-Pb-Sn mixed perovskites for optoelectronic applications.

2.
Langmuir ; 40(13): 6884-6897, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517367

RESUMEN

CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted.

3.
RSC Adv ; 13(18): 12123-12132, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37082369

RESUMEN

Cu2ZnSnS4 (CZTS) thin films have attracted considerable attention as potential candidates for photovoltaic absorber materials. In a vacuum deposition technique, a sputtering stacked metallic layer followed by a thermal process for sulfur incorporation is used to obtain high-quality CZTS thin films. In this work, for fabricating CZTS thin films, we have done a 3LYS (3 layers), 6LYS, and 9LYS sequential deposition of Sn/ZnS/Cu metal stack (via. metallic stacked nanolayer precursors) onto Mo-coated corning glass substrate via. RF-sputtering. The prepared thin films were sulfurized in a tubular furnace at 550 °C in a gas mixture of 5% H2S + 95% Ar for 10 min. We further investigated the impact of the Sn/ZnS/Cu metal stacking layers on the quality of the thin film based on its response to light because metal inter-diffusion during sulfurization is unavoidable. The inter-diffusion of precursors is low in a 3-layer stack sample, limiting the fabricated film's performance. CZTS films with 6-layer and 9-layer stacks result in an improved photocurrent density of ∼38 µA cm-2 and ∼82 µA cm-2, respectively, compared to a 3-layer sample which has a photocurrent density of ∼19 µA cm-2. This enhancement can be attributed to the 9-layer approach's superior inter-diffusion of metallic precursors and compact, smooth CZTS microstructure evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...