Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
BMC Biol ; 18(1): 90, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32698880

RESUMEN

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma de los Insectos/fisiología , Hemípteros/genética , Adaptación Biológica/genética , Distribución Animal , Animales , Especies Introducidas , Vitis
3.
J Proteome Res ; 19(3): 1319-1337, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31991085

RESUMEN

Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).


Asunto(s)
Áfidos , Virus de Plantas , Animales , Proteínas de Insectos/genética , Pisum sativum , Virus de Plantas/genética , Proteómica , Receptores Virales
4.
iScience ; 23(2): 100828, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32000126

RESUMEN

Insects have developed intriguing cuticles with very specific structures and functions, including microstructures governing their interactions with transmitted microbes, such as in aphid mouthparts harboring virus receptors within such microstructures. Here, we provide the first transcriptome analysis of an insect mouthpart cuticle ("retort organs" [ROs], the stylets' precursors). This analysis defined stylets as a complex composite material. The retort transcriptome also allowed us to propose an algorithmic definition of a new cuticular protein (CP) family with low complexity and biased amino acid composition. Finally, we identified a differentially expressed gene encoding a pyrokinin (PK) neuropeptide precursor and characterizing the mandibular glands. Injection of three predicted synthetic peptides PK1/2/3 into aphids prior to ecdysis caused a molt-specific phenotype with altered head formation. Our study provides the most complete description to date of the potential protein composition of aphid stylets, which should improve the understanding of the transmission of stylet-borne viruses.

5.
Front Physiol ; 9: 1498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410449

RESUMEN

Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.

6.
Sci Rep ; 7(1): 4902, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687751

RESUMEN

PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin, extracted from Legume seeds, with a lethal activity towards several insect pests, such as mosquitoes, some aphids and cereal weevils. This toxin acts by binding to the subunits c and e of the plasma membrane H+-ATPase (V-ATPase) in the insect midgut. In this study, two cereal weevils, the sensitive Sitophilus oryzae strain WAA42, the resistance Sitophilus oryzae strain ISOR3 and the insensitive red flour beetle Tribolium castaneum, were used in biochemical and histological experiments to demonstrate that a PA1b/V-ATPase interaction triggers the apoptosis mechanism, resulting in insect death. Upon intoxication with PA1b, apoptotic bodies are formed in the cells of the insect midgut. In addition, caspase-3 enzyme activity occurs in the midgut of sensitive weevils after intoxication with active PA1b, but not in the midgut of resistant weevils. These biochemical data were confirmed by immuno-histochemical detection of the caspase-3 active form in the midgut of sensitive weevils. Immuno-labelling experiments also revealed that the caspase-3 active form and V-ATPase are close-localized in the insect midgut. The results concerning this unique peptidic V-ATPase inhibitor pave the way for the utilization of PA1b as a promising, more selective and eco-friendly insecticide.


Asunto(s)
Proteínas de Insectos/genética , Insecticidas/toxicidad , Péptidos/toxicidad , Pisum sativum/genética , Proteínas de Plantas/toxicidad , Toxinas Biológicas/toxicidad , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/aislamiento & purificación , Insecticidas/metabolismo , Pisum sativum/química , Pisum sativum/parasitología , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Unión Proteica , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Semillas/química , Semillas/genética , Semillas/parasitología , Toxinas Biológicas/aislamiento & purificación , Toxinas Biológicas/metabolismo , Tribolium/efectos de los fármacos , Tribolium/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Gorgojos/efectos de los fármacos , Gorgojos/metabolismo
7.
Org Biomol Chem ; 14(8): 2487-97, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26815337

RESUMEN

New dicinnamoyl (caffeoyl, feruloyl, ortho and para-coumaroyl) 4-deoxyquinic acid and esters were synthesized by using a new 4-deoxy quinic acid triol intermediate. The optimisation of both coupling and deprotection steps allowed the preparation in good yields of the target products either as the carboxylic acid or the methyl ester form. Eight new compounds were evaluated for their ability to influence the feeding behaviour of the pea aphid Acyrthosiphon pisum. Artificial diet bioassays showed that two compounds are toxic (mortality and growth inhibition) at lower concentrations than the reference 3,5-dicaffeoyl quinic acid.


Asunto(s)
Áfidos/efectos de los fármacos , Cinamatos/síntesis química , Cinamatos/toxicidad , Ésteres/química , Ésteres/toxicidad , Insecticidas/síntesis química , Insecticidas/toxicidad , Ácido Quínico/análogos & derivados , Ácido Quínico/síntesis química , Ácido Quínico/toxicidad , Animales , Áfidos/crecimiento & desarrollo , Cinamatos/química , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Conducta Alimentaria/efectos de los fármacos , Insecticidas/química , Estructura Molecular , Ácido Quínico/química
8.
Sci Rep ; 5: 8791, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25740111

RESUMEN

In the track of new biopesticides, four genes namely cytA, cytB, cytC and cytD encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the plant pathogenic bacteria Dickeya dadantii genome. Here we show that three Cyt-like δ-endotoxins from D. dadantii (CytA, CytB and CytC) are toxic to the pathogen of the pea aphid Acyrthosiphon pisum in terms of both mortality and growth rate. The phylogenetic analysis of the comprehensive set of Cyt toxins available in genomic databases shows that the whole family is of limited taxonomic occurrence, though in quite diverse microbial taxa. From a structure-function perspective the 3D structure of CytC and its backbone dynamics in solution have been determined by NMR. CytC adopts a cytolysin fold, structurally classified as a Cyt2-like protein. Moreover, the identification of a putative lipid binding pocket in CytC structure, which has been probably maintained in most members of the Cyt-toxin family, could support the importance of this lipid binding cavity for the mechanism of action of the whole family. This integrative approach provided significant insights into the evolutionary and functional history of D. dadantii Cyt toxins, which appears to be interesting leads for biopesticides.


Asunto(s)
Endotoxinas/química , Endotoxinas/metabolismo , Enterobacteriaceae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Endotoxinas/clasificación , Endotoxinas/genética , Endotoxinas/aislamiento & purificación , Enterobacteriaceae/genética , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular , Filogenia , Conformación Proteica , Alineación de Secuencia , Soluciones
9.
Insect Biochem Mol Biol ; 51: 20-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859468

RESUMEN

RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids.


Asunto(s)
Áfidos/fisiología , Catepsina L/genética , Interferencia de ARN , Animales , Áfidos/genética , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/enzimología , Técnicas de Silenciamiento del Gen/métodos , Muda/genética , Muda/fisiología , Fenotipo , ARN Bicatenario/administración & dosificación
10.
PLoS One ; 8(12): e81619, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349099

RESUMEN

The PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a). We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick "cut/paste" of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.


Asunto(s)
Insecticidas/química , Nicotiana/genética , Pisum sativum/química , Proteínas de Plantas/química , Subunidades de Proteína/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Agentes de Control Biológico , ADN Complementario , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Insecticidas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pisum sativum/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Nicotiana/metabolismo , Toxinas Biológicas/biosíntesis , Toxinas Biológicas/genética
11.
BMC Genomics ; 14: 235, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575215

RESUMEN

BACKGROUND: Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. RESULTS: We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development. CONCLUSIONS: Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Pisum sativum , Simbiosis , Tirosina/metabolismo , Animales , Áfidos/metabolismo , Áfidos/fisiología , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
PLoS One ; 8(1): e54118, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342088

RESUMEN

The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP.


Asunto(s)
Antiinfecciosos/farmacología , Áfidos/microbiología , Enterobacteriaceae/genética , Transcriptoma/genética , Animales , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/patogenicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética
13.
J Insect Physiol ; 58(6): 857-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440739

RESUMEN

Forty percent of aphids live wholly or partly on trees, most species being associated with leaves or petioles. Species able to exploit woody parts have either specific adaptations, such as extra long stylets that allow them to reach the phloem, or the ability to induce galls. The woolly poplar aphid, Phloeomyzus passerinii (Signoret) (Hemiptera: Aphididae), colonizes the trunks and base of the lower branches of mature poplars and causes cortical necrosis leading to the death of trees where infestation is heavy. Very little is known about the mode of feeding of P. passerinii. This study looked at the feeding behavior of P. passerinii on stem-cuttings of Populus x canadensis Moench using: (i) histological analyses of the feeding site and stylet pathway and (ii) electrical penetration graphs (EPG, DC) based on parthenogenetic apterous females on woody tissues. The histological and EPG results showed that stylets of P. passerinii penetrated into the plant tissues following a straight unbranched extracellular and intracellular pathway to reach the cortical parenchyma. Compared to EPGs for phloem sap feeding aphids, there were differences in the waveforms A and C whereas a new waveform Icp was described. Based on histological analyses and previous descriptions of EPG waveforms, correlations with the stylet tip position and aphid activities within bark tissues are discussed. A pathway and a sustained intracellular phase were distinguished, both occurring in the cortical parenchyma cells. The bark aphid feeding mode is discussed in relation to the damage caused and in terms of changes in the aphid's diet.


Asunto(s)
Áfidos/fisiología , Conducta Alimentaria/fisiología , Enfermedades de las Plantas/parasitología , Populus , Animales , Femenino , Histocitoquímica , Microscopía Electrónica de Transmisión , Tallos de la Planta/parasitología , Estadísticas no Paramétricas
14.
PLoS One ; 7(1): e30702, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292023

RESUMEN

Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.


Asunto(s)
Áfidos/microbiología , Toxinas Bacterianas/metabolismo , Dickeya chrysanthemi/fisiología , Infecciones por Enterobacteriaceae/microbiología , Sepsis/microbiología , Animales , Animales Modificados Genéticamente , Áfidos/embriología , Áfidos/genética , Áfidos/fisiología , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Dickeya chrysanthemi/patogenicidad , Vectores de Enfermedades , Embrión no Mamífero/microbiología , Endotoxinas/genética , Endotoxinas/metabolismo , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/veterinaria , Regulación de la Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Intestinos/embriología , Intestinos/microbiología , Pisum sativum/parasitología , Enfermedades de las Plantas/microbiología , Sepsis/genética , Sepsis/veterinaria
15.
Pest Manag Sci ; 68(2): 164-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21717567

RESUMEN

BACKGROUND: Saponins are a class of secondary plant metabolites consisting of a sugar moiety glycosidically linked to a hydrophobic aglycone (sapogenin) that often possess insecticidal activities. Four saponins were selected: two triterpene saponins, Q. saponaria saponins and aescin, and two steroidal saponins, digitonin and diosgenin. Their effects were investigated on an important pest species and a model piercing-sucking insect, the pea aphid Acyrthosiphon pisum. The triterpene Q. saponaria saponins bark saponin received special attention because of its high activity. Aphids were challenged by oral and contact exposure to demonstrate aphicidal activities, and in choice experiments to support use as a natural deterrent. RESULTS: When aphids were exposed to supplemented artificial diet for 3 days, a strong aphicidal activity was recorded for three of the four saponins, with an LC50 of 0.55 mg mL(-1) for Q. saponaria saponins, 0.62 mg mL(-1) for aescin and 0.45 mg mL(-1) for digitonin. The LT50 values ranged between 1 and 4 days, depending on the dose. For diosgenin, only low toxicity (14%) was scored for concentrations up to 5 mg mL(-1). In choice experiments with treated diet, a deterrence index of 0.97 was scored for Q. saponaria saponins at 1 mg mL(-1). In contrast, direct contact showed no repellent effect. Spraying of faba bean plants with Q. saponaria saponins resulted in an LC50 of 8.2 mg mL(-1). Finally, histological analysis in aphids fed with Q. saponaria saponins demonstrated strong aberrations of the aphid gut epithelium, and exposure of midgut CF-203 cell lines to Q. saponaria saponins in vitro confirmed the cytotoxic effect. CONCLUSIONS: The present insect experiments provide strong evidence that saponins, as tested here with triterpene Q. saponaria saponins, can be useful as natural aphicides and deterrents. Furthermore, the insect midgut epithelium is suggested to be a primary target of saponin activity.


Asunto(s)
Áfidos , Repelentes de Insectos/análisis , Insecticidas/análisis , Quillaja/química , Saponinas , Animales , Digitonina , Diosgenina , Escina , Control de Insectos , Repelentes de Insectos/toxicidad , Insecticidas/toxicidad , Mucosa Intestinal/efectos de los fármacos , Corteza de la Planta/química , Saponinas/toxicidad , Pruebas de Toxicidad , Vicia faba/parasitología
16.
Mol Microbiol ; 81(5): 1271-85, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21797941

RESUMEN

Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions.


Asunto(s)
Áfidos/metabolismo , Buchnera/metabolismo , Aminoácidos Esenciales/genética , Aminoácidos Esenciales/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Áfidos/microbiología , Buchnera/genética , Productos Agrícolas , Variaciones en el Número de Copia de ADN , Genoma Bacteriano , Leucina/biosíntesis , Redes y Vías Metabólicas/genética , Plásmidos , Simbiosis/genética , Simbiosis/fisiología
17.
Database (Oxford) ; 2011: bar008, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21474551

RESUMEN

In recent years, genomes from an increasing number of organisms have been sequenced, but their annotation remains a time-consuming process. The BioCyc databases offer a framework for the integrated analysis of metabolic networks. The Pathway tool software suite allows the automated construction of a database starting from an annotated genome, but it requires prior integration of all annotations into a specific summary file or into a GenBank file. To allow the easy creation and update of a BioCyc database starting from the multiple genome annotation resources available over time, we have developed an ad hoc data management system that we called Cyc Annotation Database System (CycADS). CycADS is centred on a specific database model and on a set of Java programs to import, filter and export relevant information. Data from GenBank and other annotation sources (including for example: KAAS, PRIAM, Blast2GO and PhylomeDB) are collected into a database to be subsequently filtered and extracted to generate a complete annotation file. This file is then used to build an enriched BioCyc database using the PathoLogic program of Pathway Tools. The CycADS pipeline for annotation management was used to build the AcypiCyc database for the pea aphid (Acyrthosiphon pisum) whose genome was recently sequenced. The AcypiCyc database webpage includes also, for comparative analyses, two other metabolic reconstruction BioCyc databases generated using CycADS: TricaCyc for Tribolium castaneum and DromeCyc for Drosophila melanogaster. Linked to its flexible design, CycADS offers a powerful software tool for the generation and regular updating of enriched BioCyc databases. The CycADS system is particularly suited for metabolic gene annotation and network reconstruction in newly sequenced genomes. Because of the uniform annotation used for metabolic network reconstruction, CycADS is particularly useful for comparative analysis of the metabolism of different organisms. Database URL: http://www.cycadsys.org.


Asunto(s)
Bases de Datos Genéticas , Genómica/estadística & datos numéricos , Redes y Vías Metabólicas , Anotación de Secuencia Molecular/estadística & datos numéricos , Algoritmos , Animales , Genómica/métodos , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Programas Informáticos
18.
PLoS One ; 6(12): e29096, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22229056

RESUMEN

Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Membrana Celular/metabolismo , Genómica/métodos , Proteínas de Transporte de Membrana/genética , Simbiosis/genética , Animales , Transporte Biológico , Buchnera/citología , Buchnera/ultraestructura , Membrana Celular/ultraestructura , Genes Bacterianos/genética , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Microscopía Confocal
19.
Environ Microbiol ; 12(12): 3290-301, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20649641

RESUMEN

The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii.


Asunto(s)
Enterobacteriaceae/genética , Regulación Bacteriana de la Expresión Génica , Operón , Factores de Virulencia/genética , Animales , Áfidos/microbiología , ADN Bacteriano/genética , Enterobacteriaceae/patogenicidad , Mutación , Concentración Osmolar , Plantas/microbiología , Temperatura , Virulencia
20.
Plant Physiol ; 153(3): 1345-61, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20442276

RESUMEN

Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N',N''-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a beta-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Manosa/metabolismo , Lectinas de Plantas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Áfidos/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Sitios de Unión , Secuencia de Carbohidratos , Quitina/metabolismo , Cromatografía de Afinidad , Histidina/metabolismo , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/metabolismo , Oligopéptidos/metabolismo , Exudados de Plantas/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/genética , Polisacáridos/química , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...