Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Andrology ; 12(1): 56-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37042163

RESUMEN

BACKGROUND: While cannabis is the most widely used recreational drug in the world, the effects of phytocannabinoids on semen parameters and reproductive hormones remain controversial. Cannabinoid receptors are activated by these compounds at each level of the hypothalamus-pituitary-gonadotropic axis. OBJECTIVES: To assess the impact of the consumption of Δ-9-tetrahydrocannabinol and cannabidiol on semen parameters, as well as on male reproductive hormone and endocannabinoid levels, in a cohort of young Swiss men. MATERIALS AND METHODS: The individuals in a Swiss cohort were divided according to their cannabis consumption. In the cannabis user group, we determined the delay between the last intake of cannabis and sample collection, the chronicity of use and the presence of cannabidiol in the consumed product. Urinary Δ-9-tetrahydrocannabinol metabolites were quantified via gas chromatography-mass spectrometry. Blood phytocannabinoids, endocannabinoids and male steroids were determined via liquid chromatography-mass spectrometry/mass spectrometry, and other hypothalamus-pituitary-gonadotropic axis hormones were determined via immunoassays. Semen parameters such as sperm concentration and motility were recorded using computer-assisted sperm analysis. RESULTS: Anandamide, N-palmitoyl ethanolamide, androgens, estradiol and sex hormone binding globulin levels were all higher in cannabis users, particularly in chronic, recent and cannabidiol-positive consumers. Gonadotropin levels were not significantly different in these user subpopulations, whereas prolactin and albumin concentrations were lower. In addition, cannabis users had a more basic semen pH and a higher percentage of spermatozoa with progressive motility. However, the two latter observations seem to be related to a shorter period of sexual abstinence in this group rather than to the use of cannabis. CONCLUSIONS: Because both cannabidiol and Δ-9-tetrahydrocannabinol are frequently used by men of reproductive age, it is highly relevant to elucidate the potential effects they may have on human reproductive health. This study demonstrates that the mode of cannabis consumption must be considered when evaluating the effect of cannabis on semen quality.


Asunto(s)
Cannabidiol , Cannabis , Humanos , Masculino , Análisis de Semen , Cannabidiol/farmacología , Dronabinol/farmacología , Suiza , Semillas , Prolactina
2.
Fertil Steril ; 120(6): 1181-1192, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921737

RESUMEN

OBJECTIVES: To investigate the association between mobile phone exposure and semen parameters. DESIGN: A nationwide cross-sectional study. SETTING: Andrology laboratories in close proximity to 6 army recruitment centers. PATIENTS: In total, 2886 men from the general Swiss population, 18-22 years old, were recruited between 2005 and 2018 during military conscription. INTERVENTION: Participants delivered a semen sample and completed a questionnaire on health and lifestyle, including the number of hours they spent using their mobile phones and where they placed them when not in use. MAIN OUTCOME MEASURES: Using logistic and multiple linear regression models, adjusted odds ratios and ß coefficients were determined, respectively. The association between mobile phone exposure and semen parameters such as volume, sperm concentration, total sperm count (TSC), motility, and morphology was then evaluated. RESULTS: A total of 2759 men answered the question concerning their mobile phone use, and 2764 gave details on the position of their mobile phone when not in use. In the adjusted linear model, a higher frequency of mobile phone use (>20 times per day) was associated with a lower sperm concentration (adjusted ß: -0.152; 95% confidence interval: -0.316; 0.011) and a lower TSC (adjusted ß: -0.271; 95% confidence interval: -0.515; -0.027). In the adjusted logistic regression model, this translates to a 30% and 21% increased risk for sperm concentration and TSC to be below the World Health Organization reference values for fertile men, respectively. This inverse association was found to be more pronounced in the first study period (2005-2007) and gradually decreased with time (2008-2011 and 2012-2018). No consistent associations were observed between mobile phone use and sperm motility or sperm morphology. Keeping a mobile phone in the pants pocket was not found to be associated with lower semen parameters. CONCLUSION: This large population-based study suggests that higher mobile phone use is associated with lower sperm concentration and TSC. The observed time trend of decreasing association is in line with the transition to new technologies and the corresponding decrease in mobile phone output power. Prospective studies with improved exposure assessment are needed to confirm whether the observed associations are causal.


Asunto(s)
Uso del Teléfono Celular , Análisis de Semen , Masculino , Humanos , Adolescente , Adulto Joven , Adulto , Semen , Motilidad Espermática , Estudios Prospectivos , Autoinforme , Estudios Transversales , Espermatozoides , Recuento de Espermatozoides
3.
Front Cell Dev Biol ; 11: 1221578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547474

RESUMEN

The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.

4.
Metabolomics ; 19(6): 53, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37271779

RESUMEN

INTRODUCTION: A decrease in sperm cell count has been observed along the last several decades, especially in the most developed regions of the world. The use of metabolomics to study the composition of the seminal fluid is a promising approach to gain access to the molecular mechanisms underlying this fact. OBJECTIVES: In the present work, we aimed at relating metabolomic profiles of young healthy men to their semen quality parameters obtained from conventional microscopic analysis. METHODS: An untargeted metabolomics approach focusing on low- to mid-polarity compounds was used to analyze a subset of seminal fluid samples from a cohort of over 2700 young healthy men. RESULTS: Our results show that a broad metabolic profiling comprising several families of compounds (including acyl-carnitines, steroids, and other lipids) can contribute to effectively distinguish samples provided by individuals exhibiting low or high absolute sperm counts. CONCLUSION: A number of metabolites involved in sexual development and function, signaling, and energy metabolism were highlighted as being distinctive of samples coming from either group, proving untargeted metabolomics as a promising tool to better understand the pathophysiological processes responsible for male fertility impairment.


Asunto(s)
Análisis de Semen , Semen , Humanos , Masculino , Semen/metabolismo , Metabolómica/métodos , Espermatozoides/metabolismo , Recuento de Espermatozoides
5.
Hum Reprod ; 36(10): 2638-2648, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34486673

RESUMEN

STUDY QUESTION: Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER: The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY: In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION: We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE: Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS: The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l'Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen's Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER: NA.


Asunto(s)
Calcio , Sertralina , Antidepresivos/metabolismo , Antidepresivos/farmacología , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Humanos , Masculino , Progesterona/farmacología , Sertralina/metabolismo , Sertralina/farmacología , Motilidad Espermática , Espermatozoides/metabolismo
6.
Basic Clin Androl ; 30: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072332

RESUMEN

The prevalence of low semen quality and the incidence of testicular cancer have been steadily increasing over the past decades in different parts of the World. Although these conditions may have a genetic or epigenetic origin, there is growing evidence that multiple environmental and lifestyle factors can act alone or in combination to induce adverse effects. Exposure to these factors may occur as early as during fetal life, via the mother, and directly throughout adulthood after full spermatogenic capacity is reached. This review aims at providing an overview of past and current trends in semen quality and its relevance to fertility as well as a barometer of men's general health. The focus will be on recent epidemiological studies of young men from the general population highlighting geographic variations in Europe. The impact of some lifestyle and environmental factors will be discussed with their role in both fetal life and adulthood. These factors include smoking, alcohol consumption, psychological stress, exposure to electromagnetic radiation, and Endocrine Disrupting Chemicals (EDCs). Finally, the challenges in investigating the influence of environmental factors on semen quality in a fast changing world are presented.


La prévalence de la mauvaise qualité du sperme et l'incidence du cancer testiculaire n'ont cessé d'augmenter au cours des dernières décennies dans différentes régions du monde. Bien que ces pathologies puissent avoir une origine génétique ou épigénétique, il semble de plus en plus évident que de multiples facteurs environnementaux ou liés au mode de vie peuvent agir seuls ou en combinaison pour induire des effets délétères. L'exposition à ces facteurs peut se produire dès la vie fœtale, par l'intermédiaire de la mère, ou directement à l'âge adulte. Cette revue vise à fournir un aperçu des tendances passées et actuelles en matière de santé masculine, en se concentrant principalement sur des études épidémiologiques portant sur des jeunes hommes de la population générale et mettant en évidence les variations géographiques en Europe. L'impact de certains facteurs liés au mode de vie et à l'environnement sera examiné, ainsi que leur rôle dans la vie fœtale et à l'âge adulte. Ces facteurs comprennent le tabagisme, la consommation d'alcool, le stress psychologique, l'exposition aux rayonnements électromagnétiques et les perturbateurs endocriniens (PDE). Finalement, nous présentrons les défis auquels sont confrontés les chercheurs explorant l'impact des facteurs environnementaux sur la qualité du sperme dans un monde en rapide mutation.

7.
Mol Cell Endocrinol ; 518: 110951, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712386

RESUMEN

Calcium ions (Ca2+) are involved in nearly every aspect of cellular life. They are one of the most abundant elements in mammals and play a vital role in physiological and biochemical processes acting mainly as intracellular messengers. In spermatozoa, several key functions are regulated by cytoplasmic Ca2+ concentration such as sperm capacitation, chemotaxis, hyperactive motility, and acrosome reaction. The sperm-specific ion channel CatSper is the principal calcium channel in sperm mediating the calcium influx into the sperm flagellum and acting as an essential modulator of downstream mechanisms involved in fertilization. This review aims to provide insights into the structure, localization, and function of the mammalian CatSper channel, primarily human and mice. The activation of CatSper by progesterone and prostaglandins, as well as the ligand-independent regulation of the channel by a change in the membrane voltage and intracellular pH are going to be addressed. Finally, major questions, challenges, and perspectives are discussed.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Espermatozoides/metabolismo , Animales , Canales de Calcio/genética , Señalización del Calcio/genética , Humanos , Masculino , Ratones , Motilidad Espermática/genética
8.
Andrology ; 8(5): 1126-1135, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32167658

RESUMEN

BACKGROUND: A role for endocannabinoids in the male and female reproductive systems has been highlighted during the recent decades. Some of these compounds bind the cannabinoid CB1 receptor, which is abundantly expressed in the central nervous system but also present in the reproductive system, while others act as 'entourage compounds' modulators. OBJECTIVES: The present study aimed at evaluating the relationship between sperm quality and endocannabinoid profiles in a cohort of 200 young Swiss men and whether the presence of specific xenobiotics could influence these profiles. MATERIALS AND METHODS: Semen analysis was performed according to WHO guidelines. Endocannabinoid profiles in blood and semen, as well as bisphenol A and S in urine, were determined by LC-MSMS methods. The presence of selected drugs was tested in urine by immunological screening, and urinary tetrahydrocannabinol (THC) metabolites were quantified by GC-MS. RESULTS: Anandamide concentrations in seminal fluid and oleoylethanolamide (OEA) concentrations in blood serum appeared inversely correlated with sperm motility, while semen palmytoylethanolamide (PEA) was positively linked to sperm concentration. Moreover, OEA and PEA in seminal fluid were associated with better sperm morphology. Interestingly, the concentrations of the same endocannabinoids measured in both blood and semen were not correlated, and the presence of THC metabolites in some individuals was linked to lower concentrations of endocannabinoids. CONCLUSIONS: In the context of the general decline of the sperm count observed within the male population, endocannabinoids in semen constitute a class of promising biochemical markers that open new perspectives as a complement for the usual evaluation of semen quality or for the toxicological screening of individuals' exposure to putative endocrine disruptors.


Asunto(s)
Endocannabinoides/fisiología , Análisis de Semen , Semen/fisiología , Adolescente , Compuestos de Bencidrilo/orina , Estudios de Cohortes , Endocannabinoides/sangre , Endocannabinoides/metabolismo , Disruptores Endocrinos/farmacología , Humanos , Masculino , Fenoles/orina , Semen/efectos de los fármacos , Semen/metabolismo , Suiza , Xenobióticos/farmacología , Adulto Joven
9.
Artículo en Inglés | MEDLINE | ID: mdl-31841978

RESUMEN

Steroids are essential hormones that play a crucial role in homeostasis of many biological processes including sexual development, spermatogenesis, sperm physiology and fertility. Although steroids have been largely studied in many biological matrices (such as urine and plasma), there is very limited information of the steroid content and their study as potential indicators of the quality of the seminal fluid. In this study, a LC-HRMS (liquid chromatography-high resolution mass spectrometry) strategy has been developed in order to obtain the extended steroid profile of human seminal fluid. A comparison between supported liquid extraction (SLE) and solid liquid extraction (SPE) was carried out and the chosen SPE method was further optimized to evidence the largest possible number of compounds. Steroids were automatically annotated by using DynaStI, a publicly available retention time prediction tool developed in our lab, to match the experimental data (i.e. accurate mass and tR). Altogether, these resources allowed us to develop a post-targeted approach able to consistently detect 41 steroids in seminal fluid (with half of them being androgens). Such steroid pattern was found to be stable across different extraction times and injection days. In addition to accurate mass and retention time, the identity of 70% of the steroids contained in such steroid profile was confirmed by comparing their fragmentation patterns in real samples to those of pure commercial standards. Finally, the workflow was applied to compare and distinguish the steroid profile in seminal fluid from healthy volunteers (n = 7, with one of them being a vasectomized subject). In all, the developed steroidomics strategy allows to reliably monitor an extended panel of 41 steroids in human seminal fluid.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Semen/química , Esteroides/análisis , Humanos , Masculino , Metaboloma , Metabolómica , Semen/metabolismo , Extracción en Fase Sólida , Esteroides/aislamiento & purificación
10.
PLoS One ; 14(6): e0208371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31181066

RESUMEN

Di(2-ethylhexyl)phthalate (DEHP) interferes with sex hormones signaling pathways (SHP). C57BL/6J mice prenatally exposed to 300 mg/kg/day DEHP develop a testicular dysgenesis syndrome (TDS) at adulthood, but similarly-exposed FVB/N mice are not affected. Here we aim to understand the reasons behind this drastic difference that should depend on the genome of the strain. In both backgrounds, pregnant female mice received per os either DEHP or corn oil vehicle and the male filiations were examined. Computer-assisted sperm analysis showed a DEHP-induced decreased sperm count and velocities in C57BL/6J. Sperm RNA sequencing experiments resulted in the identification of the 62 most differentially expressed RNAs. These RNAs, mainly regulated by hormones, produced strain-specific transcriptional responses to prenatal exposure to DEHP; a pool of RNAs was increased in FVB, another pool of RNAs was decreased in C57BL/6J. In FVB/N, analysis of non-synonymous single nucleotide polymorphisms (SNP) impacting SHP identified rs387782768 and rs29315913 respectively associated with absence of the Forkhead Box A3 (Foxa3) RNA and increased expression of estrogen receptor 1 variant 4 (NM_001302533) RNA. Analysis of the role of SNPs modifying SHP binding sites in function of strain-specific responses to DEHP revealed a DEHP-resistance allele in FVB/N containing an additional FOXA1-3 binding site at rs30973633 and four DEHP-induced beta-defensins (Defb42, Defb30, Defb47 and Defb48). A DEHP-susceptibility allele in C57BL/6J contained five SNPs (rs28279710, rs32977910, rs46648903, rs46677594 and rs48287999) affecting SHP and six genes (Svs2, Svs3b, Svs4, Svs3a, Svs6 and Svs5) epigenetically silenced by DEHP. Finally, targeted experiments confirmed increased methylation in the Svs3ab promoter with decreased SEMG2 persisting across generations, providing a molecular explanation for the transgenerational sperm velocity decrease found in C57BL/6J after DEHP exposure. We conclude that the existence of SNP-dependent mechanisms in FVB/N inbred mice may confer resistance to transgenerational endocrine disruption.


Asunto(s)
Dietilhexil Ftalato/farmacología , Disruptores Endocrinos/farmacología , Animales , Metilación de ADN , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos , Oligospermia/inducido químicamente , Polimorfismo de Nucleótido Simple , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas de Secreción de la Vesícula Seminal/genética , Especificidad de la Especie , Espermatozoides/efectos de los fármacos
11.
Clin Biochem ; 62: 39-46, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29555320

RESUMEN

Steroids play an important role in sperm production and quality. These hormones have been extensively studied in blood, but poorly investigated in semen. The purpose of our study was to evaluate the relationship between sperm quality and steroid profiles in blood and semen in a small cohort of young Swiss men. Another objective was to determine whether the presence of xenobiotics or drugs could influence these profiles. Semen analysis was performed according to WHO guidelines, and steroid profiles in blood serum and seminal plasma were determined by two complementary approaches: a targeted investigation involving the quantification of a limited number of relevant steroids for testing putative correlations with sperm parameters and a global "steroidomic" analysis highlighting their complex metabolic relationship. Results showed that steroid profiles are distinct within blood and seminal fluid. No significant correlation was found between individual steroids measured in blood and in semen, demonstrating the relevance of assessing hormone levels in both fluids. Moreover, testosterone and androstenedione levels were significantly correlated in semen but not in blood. None of the evaluated spermiogram parameters was linked to steroid levels measured in any medium. The steroidomic analyses confirmed that the steroids present in both fluids are different and that there is no correlation with spermiogram parameters. Finally, upon toxicological screening, we observed that all the three samples positive for tetrahydrocannabinol, which is known to act as an endocrine disruptor, displayed low seminal testosterone concentrations. In conclusion, we did not find any evidence suggesting using steroid profiles, neither in blood nor in semen, as surrogates for sperm analyses. However, steroid profiles could be useful biomarkers of individual exposure to endocrine disruptors.


Asunto(s)
Infertilidad Masculina/metabolismo , Salud Reproductiva , Análisis de Semen , Semen/metabolismo , Esteroides/metabolismo , Adolescente , Adulto , Androstenodiona/sangre , Androstenodiona/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Análisis por Conglomerados , Estudios de Cohortes , Dronabinol/análisis , Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Humanos , Infertilidad Masculina/sangre , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/fisiopatología , Masculino , Semen/química , Índice de Severidad de la Enfermedad , Esteroides/sangre , Suiza , Testosterona/sangre , Testosterona/metabolismo , Adulto Joven
12.
PLoS One ; 12(1): e0170441, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28085963

RESUMEN

The endocrine disruptor bis(2-ethylhexyl) phthalate (DEHP) has been shown to exert adverse effects on the male animal reproductive system. However, its mode of action is unclear and a systematic analysis of its molecular targets is needed. In the present study, we investigated the effects of prenatal exposure to 300 mg/kg/day DEHP during a critical period for gonads differentiation to testes on male mice offspring reproductive parameters, including the genome-wide RNA expression and associated promoter methylation status in the sperm of the first filial generation. It was observed that adult male offspring displayed symptoms similar to the human testicular dysgenesis syndrome. A combination of sperm transcriptome and methylome data analysis allowed to detect a long-lasting DEHP-induced and robust promoter methylation-associated silencing of almost the entire cluster of the seminal vesicle secretory proteins and antigen genes, which are known to play a fundamental role in sperm physiology. It also resulted in the detection of a DEHP-induced promoter demethylation associated with an up-regulation of three genes apparently not relevant for sperm physiology and partially related to the immune system. As previously reported, DEHP induced an increase in mir-615 microRNA expression and a genome-wide decrease in microRNA promoter methylation. A functional analysis revealed DEHP-induced enrichments in down-regulated gene transcripts coding for peroxisome proliferator-activated receptors and tumor necrosis factor signaling pathways, and in up-regulated gene transcripts coding for calcium binding and numerous myosin proteins. All these enriched pathways and networks have been described to be associated in some way with the reproductive system. This study identifies a large new array of genes dysregulated by DEHP that may play a role in the complex system controlling the development of the male reproductive system.


Asunto(s)
Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Reproducción/genética , Enfermedades Testiculares/inducido químicamente , Animales , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Desarrollo Fetal/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Masculino , Ratones , MicroARNs/metabolismo , Embarazo , Regiones Promotoras Genéticas , Síndrome , Enfermedades Testiculares/genética , Testículo/efectos de los fármacos , Testículo/embriología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...