Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Aging Cell ; : e14395, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39501567

RESUMEN

A new case of dementia is diagnosed every 3 s. Beyond age, risk prediction of dementia is challenging. There is growing evidence of underlying processes that connect aging across organ systems and may provide insight for early detection, and there is a need to identify early biomarkers at an age when action can be taken to mitigate cognitive decline. We hypothesized that timing of menopause, a marker of ovarian aging, predicts brain age decades later. We used 2086 subjects with multiple "omics" measurements from post-mortem brain samples. Age at menopause (AAM) is positively correlated with cognitive function and negatively correlated with pre-frontal cortex aging acceleration (calculated as estimated biological age from DNA methylation minus chronological age). Genetic correlations showed that at least part of these associations is derived from shared heritability. To dissect the mechanism linking AAM to cognitive decline, we turned to transcriptomic data which confirmed that later AAM was associated with gene expression in pre-frontal cortex consistent with better cognition, and among those who reached menopause naturally, decreased gene expression of pathways implicated in aging. Those with surgical menopause displayed different molecular changes, including perturbed nicotinamide adenine dinucleotide (NAD+) activity, validated by metabolomics. Bile acid metabolism was perturbed in both groups, although different bile acid ratios were associated with AAM in each. Together, our data suggest that AAM is predictive of brain aging and cognition, with potential mediation by the gut, although through different mechanisms depending on the type of menopause.

2.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026777

RESUMEN

One third of women in the United States are affected by obesity during pregnancy. Maternal obesity (MO) is associated with an increased risk of neurodevelopmental and metabolic disorders in the offspring. The placenta, located at the maternal-fetal interface, is a key organ determining fetal development and likely contributes to programming of long-term offspring health. We profiled the term placental transcriptome in humans (pre-pregnancy BMI 35+ [MO condition] or 18.5-25 [lean condition]) using single-nucleus RNA-seq to compare expression profiles in MO versus lean conditions, and to reveal potential mechanisms underlying offspring disease risk. We recovered 62,864 nuclei of high quality from 10 samples each from the maternal-facing and fetal-facing sides of the placenta. On both sides in several cell types, MO was associated with upregulation of hypoxia response genes. On the maternal-facing side only, hypoxia gene expression was associated with offspring neurodevelopmental measures, in Gen3G, an independent pregnancy cohort with bulk placental tissue RNA-seq. We leveraged Gen3G to determine genes that correlated with impaired neurodevelopment and found these genes to be most highly expressed in extravillous trophoblasts (EVTs). EVTs further showed the strongest correlation between neurodevelopment impairment gene scores (NDIGSs) and the hypoxia gene score. We reanalyzed gene expression of cultured EVTs, and found increased NDIGSs associated with exposure to hypoxia. Among EVTs, accounting for the hypoxia gene score attenuated 44% of the association between BMI and NDIGSs. These data suggest that hypoxia in EVTs may be a key process in the neurodevelopmental programming of fetal exposure to MO.

3.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746364

RESUMEN

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.

4.
Brain ; 147(8): 2775-2790, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456468

RESUMEN

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.


Asunto(s)
Glicosilfosfatidilinositoles , Humanos , Masculino , Femenino , Preescolar , Niño , Adolescente , Estudios Retrospectivos , Lactante , Adulto , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/genética , Adulto Joven , Trastornos Congénitos de Glicosilación/genética , Fenotipo , Convulsiones/genética
5.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38356149

RESUMEN

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Asunto(s)
Trastornos del Neurodesarrollo , Fenotipo , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje
6.
Brain ; 147(1): 311-324, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37713627

RESUMEN

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Asunto(s)
Distonía , Epilepsia , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Microcefalia/genética , Discapacidad Intelectual/genética , Proteínas de Transporte Vesicular/genética , Trastornos del Neurodesarrollo/genética , Epilepsia/genética
7.
Brain Commun ; 5(5): fcad222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794925

RESUMEN

LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor ('ear-of-the-lynx' sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the 'ear-of-the-lynx' sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction.

8.
Emerg Med Australas ; 35(6): 1044-1046, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783472

RESUMEN

OBJECTIVE: To report the initial experience of a newly built Priority Primary Care Centre (PPCC) from the ED perspective. METHODS: A single-centre prospective cohort study, assessing referrals to the PPCC from 1 February to 30 June 2023. RESULTS: There were 1240 patients referred to the PPCC from the ED, of which 87 (7.0%) were referred back to the ED. The incidence rate of PPCC referrals was 4.2% (95% confidence interval 4.0-4.5). CONCLUSIONS: The PPCC enabled re-direction of a small proportion of ED presentations. Early results suggest that such patients can be adequately selected and managed at PPCCs.


Asunto(s)
Servicio de Urgencia en Hospital , Triaje , Humanos , Estudios Prospectivos , Triaje/métodos , Derivación y Consulta , Atención Primaria de Salud
9.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517035

RESUMEN

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Asunto(s)
Catarata , Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Femenino , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Epilepsia/genética , Cerebelo/patología , Trastornos del Neurodesarrollo/genética , Epilepsia Generalizada/patología , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/genética , Atrofia/patología , Catarata/genética , Catarata/patología , Fenotipo , Complejo Mediador/genética
10.
Nat Commun ; 14(1): 4109, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433783

RESUMEN

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Neurogénesis , Complejo Represivo Polycomb 2 , Animales , Embrión de Pollo , Humanos , Diferenciación Celular/genética , Núcleo Celular , Cromatina/genética , Metiltransferasas , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Complejo Represivo Polycomb 2/genética
11.
Mov Disord ; 38(9): 1716-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400277

RESUMEN

BACKGROUND: The outcome of clinical trials in neurodegeneration can be highly uncertain due to the presence of a strong placebo effect. OBJECTIVES: To develop a longitudinal model that can enhance the success of future Parkinson's disease trials by quantifying trial-to-trial variations in placebo and active treatment response. METHODS: A longitudinal model-based meta-analysis was conducted on the total score of Unified Parkinson's Disease Rating Scale (UPDRS) Parts 1, 2, and 3. The analysis included aggregate data from 66 arms (observational [4], placebo [28], or investigational-drug-treated [34]) from 4 observational studies and 17 interventional trials. Inter-study variabilities in key parameters were estimated. Residual variability was weighted by the size of study arms. RESULTS: The baseline total UPDRS was estimated to average at 24.5 points. Disease score was estimated to worsen by 3.90 points/year for the duration of the treatments; whilst notably, arms with a lower baseline progressed faster. The model captured the transient nature of the placebo response and sustained symptomatic drug effect. Both placebo and drug effects peaked within 2 months; although, 1 year was needed to observe the full treatment difference. Across these studies, the progression rate varied by 59.4%, the half-life for offset of placebo response varied by 79.4%, and the amplitude for drug effect varied by 105.3%. CONCLUSION: The longitudinal model-based meta-analysis describes UPDRS progression rate, captures the dynamics of the placebo response, quantifies the effect size of the available therapies, and sets the expectation of uncertainty for future trials. The findings provide informative priors to enhance the rigor and success of future trials of promising agents, including potential disease modifiers. © 2023 GSK. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ensayos Clínicos como Asunto , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Proyectos de Investigación
12.
Eur J Hum Genet ; 31(8): 905-917, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188825

RESUMEN

FINCA syndrome [MIM: 618278] is an autosomal recessive multisystem disorder characterized by fibrosis, neurodegeneration and cerebral angiomatosis. To date, 13 patients from nine families with biallelic NHLRC2 variants have been published. In all of them, the recurrent missense variant p.(Asp148Tyr) was detected on at least one allele. Common manifestations included lung or muscle fibrosis, respiratory distress, developmental delay, neuromuscular symptoms and seizures often followed by early death due to rapid disease progression.Here, we present 15 individuals from 12 families with an overlapping phenotype associated with nine novel NHLRC2 variants identified by exome analysis. All patients described here presented with moderate to severe global developmental delay and variable disease progression. Seizures, truncal hypotonia and movement disorders were frequently observed. Notably, we also present the first eight cases in which the recurrent p.(Asp148Tyr) variant was not detected in either homozygous or compound heterozygous state.We cloned and expressed all novel and most previously published non-truncating variants in HEK293-cells. From the results of these functional studies, we propose a potential genotype-phenotype correlation, with a greater reduction in protein expression being associated with a more severe phenotype.Taken together, our findings broaden the known phenotypic and molecular spectrum and emphasize that NHLRC2-related disease should be considered in patients presenting with intellectual disability, movement disorders, neuroregression and epilepsy with or without pulmonary involvement.


Asunto(s)
Discapacidad Intelectual , Trastornos del Movimiento , Humanos , Progresión de la Enfermedad , Fibrosis , Células HEK293 , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética , Síndrome
13.
J Med Genet ; 60(8): 791-796, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36581449

RESUMEN

BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidades del Desarrollo/genética
14.
Eur J Med Genet ; 65(11): 104620, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122674

RESUMEN

BACKGROUND: Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases that present with weakness and stiffness in the lower limb muscles and lead to progressive neurological decline. Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to complex HSP. This study aimed to identify causative genetic variants in consanguineous families with HSP from Azerbaijan and Pakistan. METHODS: We performed a thorough clinical and neuroradiological characterization followed by exome sequencing in 7 patients from 3 unrelated families. Segregation analysis was subsequently performed by Sanger sequencing. RESULTS: We describe 7 patients (4 males, 2-31 years of age) with developmental delay and spasticity. Similar to the previously reported cases with AP4B1-associated HSP, cases in the present report besides spasticity in the lower limbs had additional features including microcephaly, facial dysmorphism, infantile hypotonia, and epilepsy. The imaging findings included thin corpus callosum, white matter loss, and ventriculomegaly. CONCLUSION: In this study, we report 7 novel cases of HSP caused by bi-allelic variants in AP4B1 in Azerbaijani and Pakistani families. Our observations will help clinicians observe and compare common and unique clinical features of AP4B1-associated HSP patients, further improving our current understanding of HSP.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Paraplejía Espástica Hereditaria , Humanos , Masculino , Complejo 4 de Proteína Adaptadora/genética , Alelos , Mutación , Fenotipo , Paraplejía Espástica Hereditaria/genética , Femenino , Preescolar , Niño , Adolescente , Adulto Joven , Adulto
16.
Sci Transl Med ; 13(618): eabd7695, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731014

RESUMEN

Recent increases in human longevity have been accompanied by a rise in the incidence of dementia, highlighting the need to preserve cognitive function in an aging population. A small percentage of individuals with pathological hallmarks of neurodegenerative disease are able to maintain normal cognition. Although the molecular mechanisms that govern this neuroprotection remain unknown, individuals that exhibit cognitive resilience (CgR) represent a unique source of therapeutic insight. For both humans and animal models, living in an enriched, cognitively stimulating environment is the most effective known inducer of CgR. To understand potential drivers of this phenomenon, we began by profiling the molecular changes that arise from environmental enrichment in mice, which led to the identification of MEF2 transcription factors (TFs). We next turned to repositories of human clinical and brain transcriptomic data, where we found that the MEF2 transcriptional network was overrepresented among genes that are most predictive of end-stage cognition. Through single-nucleus RNA sequencing of cortical tissue from resilient and nonresilient individuals, we further confirmed up-regulation of MEF2C in resilient individuals to a subpopulation of excitatory neurons. Last, to determine the causal impact of MEF2 on cognition in the context of neurodegeneration, we overexpressed Mef2a/c in the PS19 mouse model of tauopathy and found that this was sufficient to improve cognitive flexibility and reduce hyperexcitability. Overall, our findings reveal a previously unappreciated role for MEF2 TFs in promoting CgR, highlighting their potential as biomarkers or therapeutic targets for neurodegeneration and healthy aging.


Asunto(s)
Factores de Transcripción MEF2 , Enfermedades Neurodegenerativas , Animales , Encéfalo/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Enfermedades Neurodegenerativas/genética
18.
Hum Genomics ; 15(1): 44, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256850

RESUMEN

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/patología , Elementos de Facilitación Genéticos/genética , Exoma/genética , Femenino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonía Muscular/epidemiología , Hipotonía Muscular/patología , Mutación/genética , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología
19.
Genet Med ; 23(11): 2138-2149, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34244665

RESUMEN

PURPOSE: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Convulsiones/genética
20.
Eur J Hum Genet ; 29(8): 1226-1234, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34163010

RESUMEN

The PIDDosome is a multiprotein complex, composed by the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 that induces apoptosis in response to DNA damage. In the recent years, biallelic pathogenic variants in CRADD have been associated with a neurodevelopmental disorder (MRT34; MIM 614499) characterized by pachygyria with a predominant anterior gradient, megalencephaly, epilepsy and intellectual disability. More recently, biallelic pathogenic variants in PIDD1 have been described in a few families with apparently nonsydnromic intellectual disability. Here, we aim to delineate the genetic and radio-clinical features of PIDD1-related disorder. Exome sequencing was carried out in six consanguineous families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals as well as reviewing all the data from previously reported cases. We identified five distinct novel homozygous variants (c.2584C>T p.(Arg862Trp), c.1340G>A p.(Trp447*), c.2116_2120del p.(Val706Hisfs*30), c.1564_1565delCA p.(Gln522fs*44), and c.1804_1805del p.(Gly602fs*26) in eleven subjects displaying intellectual disability, behaviorial and psychiatric features, and a typical anterior-predominant pachygyria, remarkably resembling the CRADD-related neuroimaging pattern. In summary, we outlin`e the phenotypic and molecular spectrum of PIDD1 biallelic variants supporting the evidence that the PIDD1/CRADD/caspase-2 signaling is crucial for normal gyration of the developing human neocortex as well as cognition and behavior.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Lisencefalia/genética , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Genes Recesivos , Humanos , Discapacidad Intelectual/patología , Lisencefalia/patología , Masculino , Mutación , Linaje , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...