Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0274423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107878

RESUMEN

Urinary tract infection (UTI) accounts for a significant morbidity and mortality across the world and is a leading cause for antibiotic prescriptions in the community especially in developing countries. Empirical choice of antibiotics for treatment of UTI is often discordant with the drug susceptibility of the etiologic agent. This study aimed to estimate the prevalence of community-acquired UTI caused by antibiotic resistant organisms. This was a cross-sectional study where urine samples were prospectively collected from 4,500 patients at the icddr,b diagnostic clinic in Dhaka, Bangladesh during 2016-2018. Urine samples were analyzed by standard culture method and the isolated bacteria were tested for antibiotic susceptibility by using disc diffusion method and VITEK-2. Descriptive statistics were used to estimate the prevalence of community acquired UTI (CA-UTI) by different age groups, sex, and etiology of infection. Relationship between the etiology of CA-UTI and age and sex of patients was analyzed using binary logistic regression analysis. Seasonal trends in the prevalence of CA-UTI, multi-drug resistant (MDR) pathogens and MDR Escherichia coli were also analyzed. Around 81% of patients were adults (≥18y). Of 3,200 (71%) urine samples with bacterial growth, 920 (29%) had a bacterial count of ≥1.0x105 CFU/ml indicating UTI. Women were more likely to have UTI compared to males (OR: 1.48, CI: 1.24-1.76). E. coli (51.6%) was the predominant causative pathogen followed by Streptococcus spp. (15.7%), Klebsiella spp. (12.1%), Enterococcus spp. (6.4%), Pseudomonas spp. (4.4%), coagulase-negative Staphylococcus spp. (2.0%), and other pathogens (7.8%). Both E. coli and Klebsiella spp. were predominantly resistant to penicillin (85%, 95%, respectively) followed by macrolide (70%, 76%), third-generation cephalosporins (69%, 58%), fluoroquinolones (69%, 53%) and carbapenem (5%, 9%). Around 65% of patients tested positive for multi-drug resistant (MDR) uropathogens. A higher number of male patients tested positive for MDR pathogens compared to the female patients (p = 0.015). Overall, 71% of Gram-negative and 46% of Gram-positive bacteria were MDR. The burden of community-acquired UTI caused by MDR organisms was high among the study population. The findings of the study will guide clinicians to be more selective about their antibiotic choice for empirical treatment of UTI and alleviate misuse/overuse of antibiotics in the community.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infecciones Urinarias , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bangladesh/epidemiología , Carbapenémicos/uso terapéutico , Cefalosporinas/uso terapéutico , Coagulasa , Infecciones Comunitarias Adquiridas/complicaciones , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/epidemiología , Estudios Transversales , Farmacorresistencia Microbiana , Enterococcus , Escherichia coli , Femenino , Fluoroquinolonas/uso terapéutico , Humanos , Klebsiella , Macrólidos/uso terapéutico , Masculino , Penicilinas/uso terapéutico , Prevalencia , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Infecciones Urinarias/etiología
2.
Sci Total Environ ; 831: 154890, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364179

RESUMEN

The spatial distribution of clinically important antibiotic resistant bacteria (ARB) and associated genes is important to identify the environmental distribution of contamination and 'hotspots' of antimicrobial resistance (AMR). We conducted an integrated survey of AMR in drinking water, wastewater and surface water (rivers and ponds) in three settings in Bangladesh: rural households, rural poultry farms, and urban food markets. Spatial mapping was conducted via geographic information system (GIS) using ArcGIS software. Samples (n = 397) were analyzed for the presence of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec), carbapenem-resistant E. coli (CR-Ec) and resistance genes (blaCTX-M-1,blaNDM-1). In rural households, 5% of drinking water supply samples tested positive for ESBL-Ec, and a high proportion of wastewater, pond and river water samples were positive for ESBL-Ec (90%, 76%, and 85%, respectively). In poultry farms, 10% of drinking water samples tested positive for ESBL-Ec compared to a high prevalence in wastewater, pond and river water (90%, 68%, and 85%, respectively). CR-Ec prevalence in household wastewater and pond water was relatively low (8% and 5%, respectively) compared to river water (33%). In urban areas, 38% of drinking water samples and 98% of wastewater samples from food markets tested positive for ESBL-Ec while 30% of wastewater samples tested positive for CR-Ec. Wastewaters had the highest concentrations of ESBL-Ec, CR-Ec, blaCTXM-1 and blaNDM-1 and these were significantly higher in urban compared to rural samples (p < 0.05). ESBL-Ec is ubiquitous in drinking water, wastewater and surface water bodies in both rural and urban areas of Bangladesh. CR-Ec is less widespread but found at a high prevalence in wastewater discharged from urban food markets and in rural river samples. Surveillance and monitoring of antibiotic resistant organisms and genes in waterbodies is an important first step in addressing environmental dimensions of AMR.


Asunto(s)
Agua Potable , Escherichia coli , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos/farmacología , Bangladesh/epidemiología , Agua Potable/microbiología , Escherichia coli/genética , Aves de Corral , Aguas Residuales/microbiología , beta-Lactamasas/genética
3.
Environ Health Perspect ; 129(3): 37001, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33656920

RESUMEN

BACKGROUND: Human exposure to intensively farmed livestock is a potential risk for transmission of antibiotic-resistant bacteria (ARB) but few studies have assessed the relative role of animal vs. environmental sources of ARB in low-resource community settings. OBJECTIVES: We conducted an observational study to compare ARB colonization and antibiotic-resistant gene prevalence and abundance in humans with high or low exposure to poultry in rural households, commercial poultry farms, and urban markets in Bangladesh. METHODS: Extended-spectrum ß-lactamase (ESBL)-producing and carbapenem-resistant E. coli were quantified in feces from adults with high or low poultry exposure (n=100, respectively), poultry (n=200), drinking water (n=120), and wastewater (n=120) from 40 rural households, 40 poultry farms, and 40 urban markets. RESULTS: ESBL-producing E. coli (ESBL-EC) prevalence was 67.5% (95% CI: 61.0, 74.0) in samples from adults, 68.0% (95% CI: 61.5, 74.5) in samples from poultry, and 92.5% (95% CI: 87.7, 97.3) in wastewater samples. Carbapenem-resistant E. coli prevalence was high in market wastewaters [30% (95% CI: 15.0, 45.0)] but low in humans (1%) and poultry (1%). Human, poultry, and wastewater isolates shared common resistance genes: blaCTX-M-1, qnr, and blaTEM. Human colonization was not significantly associated with exposure to poultry or setting (rural, farm, or market). Ninety-five percent of commercial poultry farms routinely administered antibiotics. Susceptibility tests were significantly different in household vs. farm and market poultry isolates for four of seven antibiotic classes. In human isolates, there were no differences except aminoglycoside resistance (16.4% high vs. 4.4% low exposure, p=0.02). Urban market wastewaters and poultry samples had significantly higher concentrations of ESBL-EC (p<0.001) and blaCTX-M-1 (p<0.001) compared with samples from farms and rural households. DISCUSSION: ESBL-EC colonization was high in humans but not significantly associated with exposure to poultry. Bidirectional transmission of antibiotic resistance is likely between humans, poultry, and the environment in these community settings, underlining the importance of One Health mitigation strategies. https://doi.org/10.1289/EHP7670.


Asunto(s)
Infecciones por Escherichia coli , Salud Única , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos , Bangladesh/epidemiología , Exposición a Riesgos Ambientales , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Humanos , beta-Lactamasas/genética
4.
Front Microbiol ; 10: 503, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923520

RESUMEN

Infections by methicillin-resistant Staphylococcus aureus (MRSA) are gradually increasing in the community. In this study, we investigated a total of 162 food samples including 112 ready-to-eat (RTE) foods and 40 processed raw meat and fish samples collected from retail vendors in Dhaka, Bangladesh and determined the occurrence of toxigenic S. aureus and MRSA. Around 22% of samples were positive for S. aureus, RTE foods being more positive (23%) than the processed raw meat/fish samples (18%). Among 35 S. aureus isolates, 74% were resistant to erythromycin, 49% to ciprofloxacin and around 30% to oxacillin and cefoxitin. Around 37% of isolates were resistant to ≥3 classes of antibiotics and 26% of isolates (n = 9) were identified as MRSA. Majority of the isolates were positive for enterotoxin genes (74%), followed by pvl gene (71%), toxic shock syndrome toxin (tsst) gene (17%) and exfoliative toxin genes (11%). Multi locus sequence typing (MLST) of 9 MRSA isolates identified four different types such as ST80 (n = 3), ST6 (n = 2), ST239 (n = 2) and ST361 (n = 2). spa typing of MRSA isolates revealed seven different types including t1198 (n = 2), t315 (n = 2), t037 (n = 1), t275 (n = 1), t304 (n = 1), t8731 (n = 1) and t10546 (n = 1). To our knowledge, this is the first report entailing baseline data on the occurrence of MRSA in RTE foods in Dhaka highlighting a potential public health risk to street food consumers.

5.
BMC Microbiol ; 18(1): 98, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30170562

RESUMEN

BACKGROUND: In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. RESULTS: We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. CONCLUSION: Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Escherichia coli O157/genética , Escherichia coli O157/virología , Microbiología de Alimentos , Toxina Shiga/genética , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/genética , Bangladesh , ADN Bacteriano/genética , ADN Viral , Países en Desarrollo , Escherichia coli O157/aislamiento & purificación , Proteínas de Escherichia coli/genética , Heces/microbiología , Variación Genética , Lisogenia , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Virulencia/genética
6.
Int J Food Microbiol ; 278: 11-19, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29689333

RESUMEN

The main objective of the study was to assess the microbiological quality of milk at different stages of the dairy value chain from farm to the factory in Bangladesh. A total of 438 raw milk samples (387 from primary producers, 32 from collectors, 15 from chilling plants, 4 from local restaurants) and 95 commercially processed milk samples were collected from northern part of Bangladesh. Almost 72% (n = 280) of samples at producer level and 100% from both collectors (n = 32) and chilling plants (n = 15) were contaminated with coliforms while 57% (n = 220) of samples from producers, 91% (n = 29) of samples from collectors and 100% (n = 15) from chilling plants were contaminated with fecal coliforms. Around 31% (n = 119) of samples from producers were positive for E. coli whereas >60% (n = 20) and 100% (n = 15) samples from collectors and chilling plants, respectively were positive for E. coli. One quarter of samples from collectors were positive for B. cereus and coagulase positive staphylococci and 33% (n = 5) of samples from chilling plants were positive for both of these microorganisms. In case of commercially processed milk, 77% (n = 46) and 37% (n = 22) of pasteurized milk samples had a high aerobic plate count (APC) (104 CFU/ml) and coliform count (>10 CFU/ml), respectively. None of the samples was positive for Shigella spp., Salmonella spp., and Campylobacter spp. Among 158 E. coli positive raw milk samples, 9% (n = 14) contained pathogenic E. coli, and enteroaggregative E. coli (EAEC) and Shiga-toxin producing E. coli (STEC) were found to be the predominant pathotypes. Of the 23 pathogenic E. coli identified from 14 samples based on their gene contents, >95% (n = 22) were resistant to at least one antibiotic and 13% (n = 3) of isolates were resistant to ≥3 classes of antibiotics. Several factors including the time of milking, hygiene practices of the producers, cow breed and amount of milk produced by the cow were found to be significantly associated with high APC of milk samples. In conclusion, both raw and commercially pasteurized milk are highly contaminated with fecal organisms. For intervention, more emphasis should be given at producer's level as microorganisms introduced to milk at this stage get the longest time for survival and multiplication.


Asunto(s)
Bacillus cereus/aislamiento & purificación , Microbiología de Alimentos , Leche/microbiología , Salmonella/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Staphylococcus/aislamiento & purificación , Animales , Bacillus cereus/efectos de los fármacos , Bangladesh , Bovinos , Industria Lechera , Países en Desarrollo , Farmacorresistencia Bacteriana Múltiple , Heces/microbiología , Femenino , Higiene , Pruebas de Sensibilidad Microbiana , Salmonella/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Encuestas y Cuestionarios
7.
Appl Environ Microbiol ; 83(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526792

RESUMEN

Resistance to carbapenem antibiotics through the production of New Delhi metallo-ß-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the blaNDM-1 gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among blaNDM-1-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including blaCTX-M-1 (80%), blaCTX-M-15 (63%), blaTEM (76%), blaSHV (33%), blaCMY-2 (16%), blaOXA-48-like (2%), blaOXA-1 (53%), and blaOXA-47-like (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying blaNDM-1 were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community.IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the blaNDM-1 gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Microbiología Ambiental , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Bangladesh/epidemiología , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/epidemiología , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Plásmidos/metabolismo , beta-Lactamasas/genética
9.
PLoS One ; 8(4): e61090, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23573295

RESUMEN

BACKGROUND: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥ 3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum ß-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. SIGNIFICANCE: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas.


Asunto(s)
Agua Potable/microbiología , Escherichia coli/efectos de los fármacos , Factores de Virulencia/genética , Microbiología del Agua , Proteínas Bacterianas/genética , Bangladesh , Resistencia a Múltiples Medicamentos , Escherichia coli/genética , Variación Genética , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Resistencia betalactámica , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...