RESUMEN
Metal organic frameworks (MOFs) have garnered significant attention in the development of stretchable and wearable conductive hydrogels for flexible transducers. However, MOFs used in hydrogel networks have been hampered by low mechanical performance and poor dispersibility in aqueous solutions, which affect the performance of hydrogels, including low toughness, limited self-recovery, short working ranges, low conductivity, and prolonged response-recovery times. To address these shortcomings, a novel approach was adopted in which micelle co-polymerization was used for the ex situ synthesis of Zn-MOF-based hydrogels with exceptional stretchability, robust toughness, anti-fatigue properties, and commendable conductivity. This breakthrough involved the ex situ integration of Zn-MOFs into hydrophobically cross-linked polymer chains. Here the micelles of EHDDAB had two functions, first they uniformly dispersed the Zn-MOFs and secondly they dynamically cross-linked the polymer chains, profoundly influencing the mechanical characteristics of the hydrogels. The non-covalent synergistic interactions introduced by Zn-MOFs endowed the hydrogels with the capacity for high stretchability, high stress, rapid self-recovery, anti-fatigue properties, and conductivity, all achieved without external stimuli. Furthermore, hydrogels based on Zn-MOFs can serve as durable and highly sensitive flexible transducers, adept at detecting diverse mechanical deformations with swift response-recovery times and high gauge factor values. Consequently, these hydrogels can be tailored to function as wearable strain sensors capable of sensing significant human joint movements, such as wrist bending, and motions involving the wrist, fingers, and elbows. Similarly, they excel at monitoring subtle human motions, such as speech pronunciation, distinguishing between different words, as well as detecting swallowing and larynx vibrations during various activities. Beyond these applications, the hydrogels exhibit proficiency in distinguishing and reproducing various written words with reliability. The Zn-MOF-based hydrogels hold promising potential for development in electronic skin, medical monitoring, soft robotics, and flexible touch panels.
Asunto(s)
Conductividad Eléctrica , Hidrogeles , Estructuras Metalorgánicas , Dispositivos Electrónicos Vestibles , Hidrogeles/química , Humanos , Estructuras Metalorgánicas/química , Zinc/química , TransductoresRESUMEN
Conductive hydrogels attract the attention of researchers worldwide, especially in the field of flexible sensors like strain and pressure. These flexible materials have potential applications in the field of electronic skin, soft robotics, energy storage, and human motion detection. However, its practical application is limited due to low stretchability, high hysteresis energy, low conductivity, long-range strain sensitivity, and high response time. It's still a challenging job to endow all these properties in a single hydrogel network. In the present work, cellulose nano crystals (CNCs) reinforced hydrophobically associated gels were developed using APS as a source of radical polymerization, acrylamide and lauryl methacrylate were used as a monomer. CNCs reinforced the hydrophobically associated hydrogels through hydrogen bonding to retain the hydrogel's network structure. Hydrogels consist of dual crosslinking, which demonstrate exceptional mechanical performance (fracture stress and strain, toughness, and Young's modulus). The low hysteresis energy (10.9 kJm-3) and high conductivity (22.97 mS/cm) make the hydrogels a strong candidate for strain sensors with high sensitivity (GF = 19.25 at 700% strain) and a fast response time of 200 ms. Cyclic performance was also investigated up to 300 continuous cycles. After 300 cycles, the hydrogels were still stable and no considerable change was observed. These hydrogels are capable of sensing different human motions like wrist, finger bending, and neck (up-down and straight and right/left motion of neck). The hydrogels also demonstrate changes in current in response to swallowing, different speaking words, and writing different alphabets. These results suggest that our prepared materials can sense different small and large human motions, and also could be used in any electronic device where strain sensing is required.
Asunto(s)
Celulosa , Nanopartículas , Humanos , Polímeros , Hidrogeles , Movimiento (Física) , Cinacalcet , Conductividad EléctricaRESUMEN
Cortisol inhibits hypothalamic-pituitary-gonadal (HPG) axis whereas RF9, a potent agonist of kisspeptin receptor (GPR54) activates HPG-axis during fasting-induced stress and under normal physiological conditions. However, the effect of RF9 on the cortisol-induced repressed HPG-axis is not studied yet. This study investigated whether exogenous cortisol-induced repression of the HPG-axis can be rescued by RF9. Six intact adult male rhesus monkeys (Macaca mulatta) habituated to chair-restraint were administered hydrocortisone sodium succinate at a rate of 20 mg/kg of body weight (BW) per day for 12 days. Single blood sample was taken by venipuncture from each animal on alternate days for hormones analyses. On experimental day 12, hydrocortisone treated monkeys received a single intravenous bolus of RF9 (n = 3) and vehicle (n = 3). The animals were bled for a period of 4 h at 60 min intervals from an indwelling cannula in the saphenous vein. RF9 was administered intravenously at the dose of 0.1 mg/kg BW immediately after taking 0 min sample. Plasma cortisol and testosterone concentrations were measured by using specific enzyme immunoassays. Hydrocortisone treatment increased plasma cortisol levels (P ≤ 0.0001) and decreased plasma testosterone (P ≤ 0.0127) levels. Interestingly, compared to vehicle, RF9 treatment significantly increased plasma testosterone levels at 120 min (P ≤ 0.0037), 180 min (P ≤ 0.0016), and 240 min (P ≤ 0.0001) intervals in the hydrocortisone treated monkeys. From these results, we concluded that RF9 administration relieves the suppressed HPG-axis in term of plasma testosterone levels in the cortisol treated monkeys.
RESUMEN
The pathophysiology of preeclampsia (PE) remains unclear. PE spiral artery remodeling dysfunction and PE offspring cardiovascular future development has been a worldwide concern. We collected placental and umbilical artery samples from nor-motensive and PE pregnancies. Mineralocorticoid receptor (MR) and its alternative splicing variant (ASV) expression and their biological effects on PE were examined. An MR ASV was found to be highly expressed in all PE samples and slightly expressed in about half of the normotensive samples (umbilical artery, ~57.58%; placenta, ~36.84%). The MR ASV expression was positively associated with blood pressure in both groups. The MR ASV protein changed the aldosterone-induced expression pattern of MR target genes related to ion exchanges and cell signaling pathways. The MR ASV can also impair the proliferation, migration, and tube formation ability of endothelial cells. These findings indicate that MR ASV in PE placenta plays a pathogenic role in PE pathophysiology, especially in endothelial dysfunction, and the existence of the MR ASV in PE umbilical artery provides a new direction in the study of PE offspring with increased risk of cardiovascular diseases.
Asunto(s)
Empalme Alternativo/genética , Preeclampsia/tratamiento farmacológico , Receptores de Mineralocorticoides/metabolismo , Enfermedades Vasculares/tratamiento farmacológico , Adulto , Aldosterona/metabolismo , Presión Sanguínea , ADN Complementario/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Placenta/metabolismo , Factor de Crecimiento Placentario , Embarazo , Proteínas Gestacionales , ARN/metabolismo , Receptores de Mineralocorticoides/genética , Factores de Riesgo , Enfermedades Vasculares/metabolismoRESUMEN
Receptive endometrium is a prerequisite for successful embryo implantation, and it follows that poor endometrial receptivity is a leading cause of implantation failure. miRNAs play important roles as epigenetic regulators of endometrial receptivity and embryo implantation through post-transcriptional modifications. However, the mechanisms of action of many miRNAs are poorly understood. In this study, we investigated the role of the miR-183 family, comprising three miRNAs (miR-183-5p, miR-182-5p, and miR-96-5p) in endometrial receptivity and embryo implantation. The miR-183 family shows estrogen-dependent upregulation in endometrial Ishikawa (IK) cells. The miR-183 family also has a positive role in migration and proliferation of IK cells. Furthermore, JAr spheroid attachment experiments show that attachment rates were significantly decreased after treatment of IK cells with inhibitors for miR-183-5p and miR-182-5p and increased after treatment with miR-183-5p-mimic and miR-96-5p-mimic, respectively. The downstream analysis shows that catenin alpha 2 (CTNNA2) is a potential target gene for miR-183-5p, and this was confirmed in luciferase reporter assays. An in vivo mouse pregnancy model shows that inhibition of miR-183-5p significantly decreases embryo implantation rates and increases CTNNA2 expression. Downregulation of CTNNA2 in endometrial cells by miR-183-5p may be significant in mediating estrogenic effects on endometrial receptivity. In conclusion, miR-183-5p and the CTNNA2 gene may be potential biomarkers for endometrial receptivity and may be useful diagnostic and therapeutic targets for successful embryo implantation.
Asunto(s)
Implantación del Embrión/genética , MicroARNs/genética , Útero/fisiología , Animales , Biomarcadores/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Implantación del Embrión/fisiología , Endometrio/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Embarazo , alfa Catenina/genéticaRESUMEN
High androgen level impairs endometrial receptivity in women experiences the recurrent miscarriage. The mechanism of androgen actions on endometrium is still uncertain. We hypothesized that androgen has a direct effect on the endometrium in women with recurrent miscarriage. In the present study, we assess the impact of androgen (A2) at high concentration (10-7 M) on Ishikawa cells compared with the physiological concentration of androgen (10-9 M). To go into deeper analysis, we use global stable isotopes labeled profiling tactic using iTRAQ reagents, followed by 2D LC-MS/MS. We determine 175 non-redundant proteins, and 18 of these were quantified. The analysis of differentially expressed proteins (DEPs) identified 8 up-regulated proteins and 10 down-regulated in the high androgen group. These DEPs were examined by ingenuity pathway (IPA) analysis and established that these proteins might play vital roles in recurrent miscarriage and endometrium receptivity. In addition, proteins cyclin-dependent kinase inhibitor 2a (CDKN2a), endothelial protein C receptor (EPCR), armadillo repeat for velocardiofacial (ARVCF) were independently confirmed using western blot. Knockdown of CDKN2a significantly decreased the expression level of CDKN2a protein in ishikawa cells, and decreased migration (p < 0.01), invasion (p < 0.05), proliferation (p < 0.05), and the rate of Jar spheroid attachment (p < 0.05) to Ishikawa cell monolayer. The present results suggest that androgen at high concentration could alter the expression levels of proteins related to endometrium development and embryo implantation, which might be a cause of the impaired endometrial receptivity and miscarriage.
RESUMEN
BACKGROUND: The existing reports about intergenerational or transgenerational effects of intrauterine hyperglycemia have included both intrauterine and postnatal metabolic exposure factors, while the impact of intrauterine hyperglycemia per se has not been assessed alone. A number of studies suggest DNA methylation reprogramming of gametes plays a crucial role in the metabolic inheritance, but it is unclear when and how DNA methylation patterns are altered when exposed to intrauterine hyperglycemia. In this study, we selected nondiabetic F1- and F2-gestational diabetes mellitus (GDM) male mice as founders to examine metabolic changes in the next generation and performed methylome sequencing of day 13.5 primordial germ cells (PGCs) from F1-GDM to explore the underlying epigenetic mechanism. RESULTS: We found that intrauterine hyperglycemia exposure resulted in obesity, insulin resistance, and/or glucose intolerance in F2 male mice, but no metabolic changes in F3 male mice at 8 weeks. Using reduced representation bisulfite sequencing, we found DNA methylome of day 13.5 PGCs from F1-GDM fetuses revealed differently methylated genes enriched in obesity and diabetes. Methylation validation of the insulin resistance and fat accumulation gene Fyn showed a consistent hypomethylation status in F1 PGCs, F1 fetal testes, sperm from F1/C-GDM mice, and somatic cells from F2-GDM male mice. In contrast, no methylation alteration was observed in F2-GDM male germ cells and F3-GDM somatic cells. CONCLUSION: We provide evidence that intrauterine hyperglycemia exposure per se contributes to intergenerational metabolic changes in the F2 but not F3 generation. And the aberrant DNA methylation reprogramming occurs as early as day 13.5 in PGCs of the F1 generation. Our findings suggest that intrauterine exposure alone is sufficient to cause the epigenetic inheritance in F2 offspring, and the epigenetic memory carried by DNA methylation pattern could be erased by the second wave of methylation reprogramming in F2 PGCs during fetal development.
Asunto(s)
Metilación de ADN , Diabetes Gestacional/genética , Redes Reguladoras de Genes , Intolerancia a la Glucosa/genética , Obesidad/genética , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Efecto Fundador , Predisposición Genética a la Enfermedad , Células Germinativas/citología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Resistencia a la Insulina , Masculino , Ratones , Embarazo , Proteínas Proto-Oncogénicas c-fyn/genética , Análisis de Secuencia de ADNRESUMEN
Maternal obesity influence the child's long-term development and health. Though, the mechanism concerned in this process is still uncertain. In the present study, we explored whether overfeeding of a high-fat diet during pregnancy in female rats altered metabolic phenotypes in an F1 generation and authenticated the contribution of hypothalamic leptin signaling. Leptin responsiveness and the number of immunopositive neurons for phosphorylated signal transducer and activator transcription 3 (pSTAT3) were analyzed. Neuropeptide Y in the arcuate nucleus of the hypothalamus and in nucleus tractus solitaries was examined. Triglycerides and leptin levels were increased in the high-fat diet mother. The number of neuropeptide Y positive cell bodies and neurons was significantly increased in the high-fat diet-F1 offspring (HDF-F1) as compared to Chow-F1. Leptin administration significantly decreased the food intake and increased the pSTAT3 expression levels in neurons in the arcuate nucleus of Chow-F1. However, leptin did not show any effect on food intake and had a reduced effect on pSTAT3 expression levels in neurons in the arcuate nucleus of HDF-F1. From the present domino effect, we conclude that mothers exposed to high-fat diet during pregnancy may pass the obese phenotype to the succeeding generation via altering hypothalamic leptin signaling.
RESUMEN
Stress activates gonadotropin inhibitory hormone (GnIH), hypothalamic-pituitary-adrenal axis (HPA-axis) and represses hypothalamic-pituitary-gonadal axis (HPG-axis) but RF9 administration relieves stress-induced repression of the HPG-axis. Importantly, it was not known whether GnIH signaling and RF9 synthetic peptide modulate the HPA axis. To assess this, mammalian orthologs of GnIH (RFRP-1 and RFRP-3) and RF9 were administered to intact adult male rhesus monkeys. RFRP-1 (125µg/animal), RFRP-3 (250µg/animal) and RF9 (0.1mg/kg BW) were intravenously (iv) injected into normal fed (n=4) monkeys. Additionally, a single bolus iv injection of RF9 (0.1mg/kg BW) was also administered to 48h fasted monkeys (n=4) to check the effects of RF9 signaling on an activated HPA-axis. Serial blood samples were collected, centrifuged and the obtained plasma was used for the analysis of cortisol by specific enzyme immunoassay. RFRP-1 treatment significantly increased cortisol levels while RFRP-3 increased the plasma cortisol, but the effect was non-significant. RF9 treatment significantly increased cortisol levels in normal fed animals. In contrast, RF9 injection did not significantly alter circulating cortisol in fasted monkeys. In conclusion, our results suggest stimulatory action of RFRPs and RF9 on the HPA axis in the adult male monkeys. However, the mechanism and site of action of RFRP-1 and RF9 along the HPA-axis is still unknown. Therefore, further studies are needed to decipher the mechanism and site of action of RFRPs and RF9 on the HPA axis in primates.
Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/farmacología , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Neuropéptidos/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Adamantano/farmacología , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Macaca mulatta , Masculino , Sistema Hipófiso-Suprarrenal/metabolismoRESUMEN
Previous studies have shown that increasing estradiol concentrations had a toxic effect on the embryo and were deleterious to embryo adhesion. In this study, we evaluated the physiological impact of estradiol concentrations on endometrial cells to reveal that serum estradiol levels probably targeted the endometrium in controlled ovarian hyperstimulation (COH) protocols. An attachment model of human choriocarcinoma (JAr) cell spheroids to receptive-phase endometrial epithelial cells and Ishikawa cells treated with different estradiol (10-9 M or 10-7 M) concentrations was developed. Differentially expressed protein profiling of the Ishikawa cells was performed by proteomic analysis. Estradiol at 10-7 M demonstrated a high attachment rate of JAr spheroids to the endometrial cell monolayers. Using iTRAQ coupled with LC-MS/MS, we identified 45 differentially expressed proteins containing 43 significantly upregulated and 2 downregulated proteins in Ishikawa cells treated with 10-7 M estradiol. Differential expression of C3, plasminogen and kininogen-1 by Western blot confirmed the proteomic results. C3, plasminogen and kininogen-1 localization in human receptive endometrial luminal epithelium highlighted the key proteins as possible targets for endometrial receptivity and interception. Ingenuity pathway analysis of differentially expressed proteins exhibited a variety of signaling pathways, including LXR/RXR activation pathway and acute-phase response signaling and upstream regulators (TNF, IL6, Hmgn3 and miR-140-3p) associated with endometrial receptivity. The observed estrogenic effect on differential proteome dynamics in Ishikawa cells indicates that the human endometrium is the probable target for serum estradiol levels in COH cycles. The findings are also important for future functional studies with the identified proteins that may influence embryo implantation.
Asunto(s)
Endometrio/metabolismo , Estradiol/sangre , Inducción de la Ovulación , Western Blotting , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Implantación del Embrión/efectos de los fármacos , Endometrio/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Estradiol/farmacología , Femenino , Humanos , Mapas de Interacción de Proteínas , Proteómica , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismoRESUMEN
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 µg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.