Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(5): 112512, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37200190

RESUMEN

Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.


Asunto(s)
Linfocitos B , Factor de Transcripción STAT3 , Centro Germinal , Células Plasmáticas , Transducción de Señal
2.
Elife ; 122023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36803766

RESUMEN

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.


Asunto(s)
Linfocitos B , Canales de Calcio , Proteína ORAI1 , Animales , Ratones , Linfocitos B/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
3.
Sci Immunol ; 8(79): eadd9413, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608149

RESUMEN

Long-lived and high-affinity antibodies are derived from germinal center (GC) activity, but the cytokines that regulate GC function are still being identified. Here, we show that thymic stromal lymphopoietin (TSLP) signaling regulates the GC and the magnitude of antigen-specific antibody responses. Both GC B cells and T follicular helper (TFH) cells up-regulate the expression of surface TSLP receptor (TSLPR), but cell-specific loss of TSLPR results in distinct effects on GC formation and antibody production. TSLPR signaling on T cells supports the retention of antigen-specific B cells and TFH differentiation, whereas TSLPR in B cells regulates the generation of antigen-specific memory B cells. TSLPR in both cell types promotes interferon regulatory factor 4 (IRF4) expression, which is important for efficient GC activity. Overall, we identified a previously unappreciated cytokine regulator of GCs and identified how this signaling pathway differentially regulates B and T cell responses in the GC.


Asunto(s)
Linfocitos B , Linfocitos T , Linfopoyetina del Estroma Tímico , Citocinas , Centro Germinal/metabolismo , Receptores de Citocinas/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos B/metabolismo
4.
Cell Calcium ; 108: 102667, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308855

RESUMEN

Antigen receptor stimulation triggers cytosolic Ca2+ signals, which activate transcriptional and metabolic programs critical for immune function. B-cell receptor (BCR) engagement causes rapid cytosolic Ca2+ rise through the ubiquitous store-operated calcium entry (SOCE) pathway. Slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), extrudes Ca2+ out of the mitochondria and maintains optimal SOCE activity. Inhibition of NCLX in DT40 and A20 B lymphocyte lines was recently shown to impair cytosolic Ca2+ transients in response to antigen-receptor stimulation, however the downstream functional consequences of this impairment remain unclear. Here, we generated Slc8b1 knockout A20 B-cell lines using CRISPR/Cas9 technology and B-cell specific Slc8b1 knockout mice. Surprisingly, while loss of Slc8b1 in B lymphocytes led to reduction in SOCE, it had a marginal effect on mitochondrial Ca2+ extrusion, suggesting that NCLX is not the major mitochondrial Ca2+ extrusion mechanism in B cells. Furthermore, endoplasmic reticulum (ER) Ca2+ content and rates of ER depletion and refilling remained unaltered in Slc8b1 knockout B cells. Slc8b1 deficiency increased mitochondrial production of oxidants, reduced mitochondrial bioenergetics and altered mitochondrial ultrastructure. B-cell specific Slc8b1 knockout mice showed reduced germinal center B cell responses following foreign antigen and pathogen driven immune responses. Our studies provide novel insights into the function of Slc8b1 in germinal center B cells and its contribution to B-cell signaling and effector function.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Animales , Ratones , Linfocitos B/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Ratones Noqueados , Mitocondrias/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638804

RESUMEN

There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.


Asunto(s)
Linfocitos B/inmunología , Interferones/inmunología , Animales , Autoanticuerpos , Humanos , Interferones/metabolismo , Lupus Eritematoso Sistémico , Transducción de Señal
6.
J Autoimmun ; 122: 102689, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224936

RESUMEN

Elevated interleukin (IL)-21 is a common finding in the tissues and/or sera of patients with autoimmune disease. CD4 T cells are the primary producers of IL-21; often the IL-21 producing CD4 T cells will express molecules associated with follicular helper cells (TFH). Recent work has shown that the CD4 T cell-derived IL-21 is able to promote effector functions and memory differentiation of CD8 T cells in chronic infections and cancer. Autoimmunity has similarities to chronic infections and cancer. However, CD4 T cell-derived IL-21:IL21R signaling in CD8 T cells has not been fully appreciated in the context of autoimmunity. In this review, we assess the current knowledge regarding CD4 T cell-derived IL-21 and IL21R signaling within CD8 T cells and evaluate what implications it has within several autoimmune diseases including systemic lupus erythematous, rheumatoid arthritis, juvenile idiopathic arthritis, type 1 diabetes mellitus, psoriasis, Sjögren's syndrome, vitiligo, antiphospholipid syndrome, pemphigus, and giant cell arteritis.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD8-positivos/inmunología , Interleucinas/metabolismo , Células T Auxiliares Foliculares/inmunología , Animales , Enfermedades Autoinmunes/sangre , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Humanos , Memoria Inmunológica , Receptores de Interleucina-21/metabolismo , Transducción de Señal/inmunología , Células T Auxiliares Foliculares/metabolismo
7.
Front Immunol ; 12: 683710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079558

RESUMEN

Loss of B cell tolerance is central to autoimmune diseases such as systemic lupus erythematosus (SLE). As such, the mechanisms involved in B cell development, maturation, activation, and function that are aberrantly regulated in SLE are of interest in the design of targeted therapeutics. While many factors are involved in the generation and regulation of B cell responses, miRNAs have emerged as critical regulators of these responses within the last decade. To date, miRNA involvement in B cell responses has largely been studied in non-autoimmune, immunization-based systems. However, miRNA profiles have also been strongly associated with SLE in human patients and these molecules have proven critical in both the promotion and regulation of disease in mouse models and in the formation of autoreactive B cell responses. Functionally, miRNAs are small non-coding RNAs that bind to complementary sequences located in target mRNA transcripts to mediate transcript degradation or translational repression, invoking a post-transcriptional level of genetic regulation. Due to their capacity to target a diverse range of transcripts and pathways in different immune cell types and throughout the various stages of development and response, targeting miRNAs is an interesting potential therapeutic avenue. Herein, we focus on what is currently known about miRNA function in both normal and SLE B cell responses, primarily highlighting miRNAs with confirmed functions in mouse models. We also discuss areas that should be addressed in future studies and whether the development of miRNA-centric therapeutics may be a viable alternative for the treatment of SLE.


Asunto(s)
Linfocitos B/inmunología , Lupus Eritematoso Sistémico/inmunología , MicroARNs/biosíntesis , Animales , Modelos Animales de Enfermedad , Centro Germinal/inmunología , Humanos , Tolerancia Inmunológica , Ratones , MicroARNs/genética
8.
J Immunol ; 206(12): 2803-2818, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34039637

RESUMEN

MicroRNAs (miRNAs) are involved in healthy B cell responses and the loss of tolerance in systemic lupus erythematosus (SLE), although the role of many miRNAs remains poorly understood. Dampening miR-21 activity was previously shown to reduce splenomegaly and blood urea nitrogen levels in SLE-prone mice, but the detailed cellular responses and mechanism of action remains unexplored. In this study, using the TLR7 agonist, imiquimod-induced SLE model, we observed that loss of miR-21 in Sle1b mice prevented the formation of plasma cells and autoantibody-producing Ab-forming cells (AFCs) without a significant effect on the magnitude of the germinal center (GC) response. We further observed reduced dendritic cell and monocyte numbers in the spleens of miR-21-deficient Sle1b mice that were associated with reduced IFN, proinflammatory cytokines, and effector CD4+ T cell responses. RNA sequencing analysis on B cells from miR-21-deficient Sle1b mice revealed reduced activation and response to IFN, and cytokine and target array analysis revealed modulation of numerous miR-21 target genes in response to TLR7 activation and type I IFN stimulation. Our findings in the B6.Sle1bYaa (Sle1b Yaa) spontaneous model recapitulated the miR-21 role in TLR7-induced responses with an additional role in autoimmune GC and T follicular helper responses. Finally, immunization with T-dependent Ag revealed a role for miR-21 in foreign Ag-driven GC and Ab, but not AFC, responses. Our data suggest a potential multifaceted, context-dependent role for miR-21 in autoimmune and foreign Ag-driven AFC and GC responses. Further study is warranted to delineate the cell-intrinsic requirements and mechanisms of miR-21 during infection and SLE development.


Asunto(s)
Antígenos/inmunología , Autoinmunidad/inmunología , Glicoproteínas de Membrana/inmunología , MicroARNs/inmunología , Receptor Toll-Like 7/inmunología , Animales , Formación de Anticuerpos/inmunología , Femenino , Masculino , Ratones , Ratones Noqueados
9.
Immunohorizons ; 5(1): 2-15, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446493

RESUMEN

Genome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Lupus Eritematoso Sistémico/metabolismo , Factor de Transcripción STAT4/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Autoanticuerpos/sangre , Autoantígenos/inmunología , Autoinmunidad , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT4/genética
10.
Sci Immunol ; 5(51)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948671

RESUMEN

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interleucinas/inmunología , Infecciones por Polyomavirus/inmunología , Poliomavirus , Infecciones Tumorales por Virus/inmunología , Animales , Encéfalo/citología , Diferenciación Celular , Citocinas/inmunología , Interleucinas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/inmunología
11.
Front Immunol ; 11: 1632, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849556

RESUMEN

IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Interferón gamma/metabolismo , Interleucina-10/biosíntesis , Transducción de Señal , Receptor Toll-Like 7/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Subgrupos de Linfocitos B/inmunología , Biomarcadores , Modelos Animales de Enfermedad , Inmunomodulación/genética , Inmunofenotipificación , Interferón gamma/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Transgénicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
12.
Sci Immunol ; 5(46)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276965

RESUMEN

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/inmunología , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Estructuras Linfoides Terciarias/inmunología , Animales , Femenino , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Salmonella enterica/inmunología , Estreptomicina
13.
J Immunol ; 204(10): 2641-2650, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253245

RESUMEN

Although STAT1 tyrosine-701 phosphorylation (designated STAT1-pY701) is indispensable for STAT1 function, the requirement for STAT1 serine-727 phosphorylation (designated STAT1-pS727) during systemic autoimmune and antipathogen responses remains unclear. Using autoimmune-prone B6.Sle1b mice expressing a STAT1-S727A mutant in which serine is replaced by alanine, we report in this study that STAT1-pS727 promotes autoimmune Ab-forming cell (AFC) and germinal center (GC) responses, driving autoantibody production and systemic lupus erythematosus (SLE) development. In contrast, STAT1-pS727 is not required for GC, T follicular helper cell (Tfh), and Ab responses to various foreign Ags, including pathogens. STAT1-pS727 is also not required for gut microbiota and dietary Ag-driven GC and Tfh responses in B6.Sle1b mice. By generating B cell-specific bone marrow chimeras, we demonstrate that STAT1-pS727 plays an important B cell-intrinsic role in promoting autoimmune AFC, GC, and Tfh responses, leading to SLE-associated autoantibody production. Our analysis of the TLR7-accelerated B6.Sle1b.Yaa SLE disease model expressing a STAT1-S727A mutant reveals STAT1-pS727-mediated regulation of autoimmune AFC and GC responses and lupus nephritis development. Together, we identify previously unrecognized differential regulation of systemic autoimmune and antipathogen responses by STAT1-pS727. Our data implicate STAT1-pS727 as a therapeutic target for SLE without overtly affecting STAT1-mediated protection against pathogenic infections.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Lupus Eritematoso Sistémico/metabolismo , Factor de Transcripción STAT1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Autoanticuerpos/sangre , Autoantígenos/inmunología , Autoinmunidad , Linfocitos B/trasplante , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fosforilación , Dominios Proteicos/genética , Factor de Transcripción STAT1/genética , Serina/genética , Activación Transcripcional , Quimera por Trasplante
14.
J Immunol ; 204(4): 796-809, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31900342

RESUMEN

TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos B/inmunología , Interferón gamma/inmunología , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/inmunología , Transducción de Señal/inmunología , Animales , Centro Germinal/inmunología , Interferón Tipo I , Glicoproteínas de Membrana/inmunología , Ratones , Receptor Toll-Like 7/inmunología
15.
Immunohorizons ; 3(10): 463-477, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594791

RESUMEN

Germinal centers (GCs) are essential for the production of somatically hypermutated, class-switched Abs that are protective against infection, but they also form in the absence of purposeful immunization or infection, and are termed spontaneous GCs (Spt-GCs). Although Spt-GCs can arise in nonautoimmune-prone mice, aberrant regulation of Spt-GCs in autoimmune-prone mice is strongly associated with the development of autoimmune diseases like systemic lupus erythematosus. The formation of Spt-GCs is crucially driven by TLR7-mediated RNA sensing. However, the impact of MAVS-dependent, Rig-like receptor-mediated RNA sensing on the Spt-GC response remains unknown. In this study, we assessed the Spt-GC response and splenic B cell development in two MAVS-deficient mice with distinct genetic backgrounds. Importantly, we found that MAVS differentially controls Spt-GC responses and B cell development, depending on genetic background. B6/129 mixed background MAVSKO mice had nearly absent Spt-GC responses in the spleen and cervical lymph nodes, which were associated with impaired splenic B cell development, in addition to impaired B cell activation and TLR7 expression. Interestingly, treatment of mice with TLR7 agonist could partially rescue GC responses by overcoming follicular B cell activation deficits. Contrastingly, the absence of MAVS on a B6 background resulted in normal B cell development and Spt-GC formation. Our results highlight important differences in the contribution of MAVS to B cell development and Spt-GC function, depending on the genetic background, warranting greater regard for the impact of genetic background in further studies using these mice for the study of autoimmunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos B/efectos de los fármacos , Antecedentes Genéticos , Imiquimod/farmacología , Glicoproteínas de Membrana/inmunología , Ratones Noqueados , Especificidad de la Especie , Bazo/citología , Receptor Toll-Like 7/inmunología
16.
Autoimmunity ; 52(2): 57-68, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31006265

RESUMEN

Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.


Asunto(s)
Anticuerpos Antinucleares/inmunología , Linfocitos B , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico , Macrófagos , Selenio/farmacología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones
17.
Curr Rheumatol Rep ; 21(1): 3, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30673885

RESUMEN

PURPOSE OF REVIEW: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with strong genetic associations. Here, we provide an update on recent advancements in validating SLE candidate genes and risk variants identified in genome-wide association studies (GWAS). RECENT FINDINGS: A pairing of computational biology with new and emerging techniques has significantly increased our understanding of SLE associated variants. Specifically, generation of mutations within mice and examination of patient samples has been the dominant mechanisms for variant validation. While progress has been made in validating some genes, the number of associated genes is growing with minimal exploration of the effects of individual variants on SLE. This indicates that further examination of SLE risk variants in a cell-type-specific manner is required for better understanding of their contributions to SLE disease mechanisms.


Asunto(s)
Lupus Eritematoso Sistémico/genética , Animales , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Factores Reguladores del Interferón/genética , Helicasa Inducida por Interferón IFIH1/genética , Lupus Eritematoso Sistémico/inmunología , Cooperación Linfocítica/genética , Cooperación Linfocítica/inmunología , Ratones , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología
18.
Cell Rep ; 24(2): 406-418, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996101

RESUMEN

Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset.


Asunto(s)
Linfocitos B/inmunología , Tolerancia Inmunológica , Interferón Tipo I/metabolismo , Transducción de Señal , Animales , Anticuerpos Antinucleares/metabolismo , Afinidad de Anticuerpos , Formación de Anticuerpos , Antígenos/metabolismo , Autoanticuerpos/biosíntesis , ADN/metabolismo , Femenino , Centro Germinal/metabolismo , Inmunización , Ratones Endogámicos C57BL , Receptor de Interferón alfa y beta/metabolismo , Transcriptoma/genética
19.
Hepatology ; 67(4): 1408-1419, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28921595

RESUMEN

We have reported on a murine model of autoimmune cholangitis, generated by altering the AU-rich element (ARE) by deletion of the interferon gamma (IFN-γ) 3' untranslated region (coined ARE-Del-/- ), that has striking similarities to human primary biliary cholangitis (PBC) with female predominance. Previously, we suggested that the sex bias of autoimmune cholangitis was secondary to intense and sustained type I and II IFN signaling. Based on this thesis, and to define the mechanisms that lead to portal inflammation, we specifically addressed the hypothesis that type I IFNs are the driver of this disease. To accomplish these goals, we crossed ARE-Del-/- mice with IFN type I receptor alpha chain (Ifnar1) knockout mice. We report herein that loss of type I IFN receptor signaling in the double construct of ARE-Del-/- Ifnar1-/- mice dramatically reduces liver pathology and abrogated sex bias. More importantly, female ARE-Del-/- mice have an increased number of germinal center (GC) B cells as well as abnormal follicular formation, sites which have been implicated in loss of tolerance. Deletion of type I IFN signaling in ARE-Del-/- Ifnar1-/- mice corrects these GC abnormalities, including abnormal follicular structure. CONCLUSION: Our data implicate type I IFN signaling as a necessary component of the sex bias of this murine model of autoimmune cholangitis. Importantly these data suggest that drugs that target the type I IFN signaling pathway would have potential benefit in the earlier stages of PBC. (Hepatology 2018;67:1408-1419).


Asunto(s)
Enfermedades Autoinmunes/inmunología , Colangitis/inmunología , Interferón Tipo I/genética , Hígado/patología , Animales , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Factores Sexuales , Transducción de Señal/inmunología
20.
J Immunol ; 199(12): 4001-4015, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118245

RESUMEN

Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Centro Germinal/inmunología , Autotolerancia/fisiología , Tirosina Quinasa c-Mer/fisiología , Animales , Presentación de Antígeno , Apoptosis , Subgrupos de Linfocitos B/inmunología , Femenino , Inmunización , Cambio de Clase de Inmunoglobulina , Riñón/patología , Masculino , Glicoproteínas de Membrana/deficiencia , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , ARN/inmunología , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 7/deficiencia , Receptor Toll-Like 9/deficiencia , Tirosina Quinasa c-Mer/deficiencia , Tirosina Quinasa c-Mer/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA